Welcome!

SDN Journal Authors: Yeshim Deniz, Mike Hicks, Kira Makagon, Liz McMillan, Hovhannes Avoyan

Blog Feed Post

Why Contextual Data Locality Matters

Big Data is quickly overtaking SDN as a key phrase in today’s networking lingo. And overused already as it may be, it actually has a lot more meaning and definition compared to SDN. Big Data solutions are designed to work on lots of data as the name suggests. Of course they have been around forever, talk to any large bank, credit card company, airline or logistics company and all of them have had applications running on extremely large databases and data sets forever. But this is the new Big Data, the one inspired by Hadoop, MapReduce and friends. High performance compute clusters specifically created to analyze large amounts of data and reduce it to a form and quantity that human brains can use in decision making.

What makes today’s Big Data solutions different than its more traditional large database based applications, beyond the sheer datasets being analyzed, is the distributed nature of the analysis. Big Data solutions are designed to run across 100s or even 1000s of servers, each with multiple CPU cores to chew on the data. Traditional large database applications tend to be more localized with fewer applications and servers accessing the data, allowing for more tightly custom integrated solutions, the likes of which Oracle and friends are experts at.

Big Data Flashback

In the late 80s I started my career working as a network engineer for a high energy physics research institute. Working closely with the folks at CERN in Geneva, these physicists were (at the time, and probably still) masters of creating very large datasets. Every time an experiment was run, Tbytes of data (probably Pbytes by now) were generated by thousands of sensors along the tunnel or ring particles were passed through to collide.

The Big Data solution at the time was primitive, but not all that much different than today. The large datasets were manually broken into manageable pieces, something that would fit on a tape or disk. These datasets were then hand copied onto a compute server or super computer and the analysis application would churn through it to find specific data, correlate events and simply reduce the data to something smaller and meaningful. This would then create a new dataset, which would be combined, chopped up again, and the process repeated itself until they arrived at data that was consumable for humans to create new theories from, or provide a piece of proof of an existing theory.

During that first job, the IT group spend an enormous amount of time moving data around. A lot of it manual: tapes and disks were constantly being copied onto the appropriate compute server. The data had to be local to have any chance of analyzing the data. Between tapes, local disks and the network, the local disks were the only storage with appropriate speed to have a hope of finalizing the data reductions. And even then it would not be unusual to have a rather powerful (for the time) Apollo workstation run for several weeks on a single data set.

Back to the here and now

Forward the clock to now. The above description is really not that different from how Hadoop MapReduce works. Start with a big data set, chop it into pieces, replicate the data, compute on the data close to physical locality of the data. Then send results to Reducers, combine the results, then perhaps repeat again to get to human interpretable results.

As fast as we believe the network is within 10GbE access ports, it is still commonly the most restrictive component in the compute, distributed storage and network trio. Compute power increments have far outpaced network speed increments and even memory speed increments. We have many more cycles available to compute, but have not been able to get the data into these CPUs with the same increments. As a result, storage solutions are becoming increasingly distributed, closer to the compute power that needs it.

It’s a natural thought to have the data close to where it needs to be processed, close enough that the effort of retrieving it does not impact the overall completion of the task that uses that data. If I am writing a research paper that takes several hours to complete, I do not mind having to wait a second here or there for the right web sites to load. I would mind if I had to get into my car and drive to the library to look something up, drive back home to work on my paper, and keep doing that. The relationship between time and effort to get data has to become negligible compared to the time and effort required to complete the task.

Locality and growth

This type of contextual locality is extremely hard to manage in a dynamic and growing environment. How do you make sure that the right data remains contextually close to where it is needed when servers and VMs may not be physically close? They may not be in the same rack for the same application or customer, they may not even be in the same pod or datacenter. Storage is relatively cheap, but replication for closeness can very quickly lead to a data distribution complexity that is unmanageable in environments where its not a single orchestrated big data solution.

To solve this problem you need help from your network. You need to be able to create locality on the fly. Things that are not physically close need to be made virtually close, but with the characteristics of physical locality. And in network terms these are of course measured in the usual staples of latency and bandwidth. This is when you want to articulate relationships between the data and the applications that need that data and create virtual closeness that resembles the physical. This may mean dedicated paths through multiple switches to avoid congestion that will dramatically impact latency. These same paths can provide direct physical connectivity through dynamically engineered optical paths between application and storage, or simply appropriate prioritization of traffic along these paths. Without having to worry explicitly where the application is or where the storage is.

Physics will always stand in the way of what we really want or need, but that does not mean we use that same physics with a bit of math to create solutions that manage the complexity of creating dynamic locality. Locality is important. More pronounced in Big Data solutions, but even at a smaller scale it is important within the context of the compute effort on that data.

[Today's fun fact: Lake Superior is the world's largest lake. With that kind of naming accuracy we would like to hire the person that named the lake as our VP of Naming and Terminology]

The post Why Contextual Data Locality Matters appeared first on Plexxi.

Read the original blog entry...

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

Cloud Expo Latest Stories
Come learn about what you need to consider when moving your data to the cloud. In her session at 15th Cloud Expo, Skyla Loomis, a Program Director of Cloudant Development at Cloudant, will discuss the security, performance, and operational implications of keeping your data on premise, moving it to the cloud, or taking a hybrid approach. She will use real customer examples to illustrate the tradeoffs, key decision points, and how to be successful with a cloud or hybrid cloud solution.
In today's application economy, enterprise organizations realize that it's their applications that are the heart and soul of their business. If their application users have a bad experience, their revenue and reputation are at stake. In his session at 15th Cloud Expo, Anand Akela, Senior Director of Product Marketing for Application Performance Management at CA Technologies, will discuss how a user-centric Application Performance Management solution can help inspire your users with every application transaction.
With the explosion of the cloud, more businesses are transitioning to a recurring revenue model to generate reliable sales, grow profits, and open new markets. This opportunity requires businesses to get to market quickly with the pricing and packaging options customers want. In addition, you will want to take advantage of the ensuing tidal wave of data to more effectively upsell, cross-sell and manage your customers. All of this is possible, but only with the right approach. At 15th Cloud Expo, Brendan O'Brien, Co-founder at Aria Systems and the inventor of cloud billing panelists, will lead a panel discussion on what it takes to launch and manage a successful recurring revenue business. The panelists will offer their insights about what each department will need to consider, from financial management to line of business and IT. The panelists will also offer examples from their success in recurring revenue with companies such as Audi, Constant Contact, Experian, Pitney-Bowes, Teleko...
Planning scalable environments isn't terribly difficult, but it does require a change of perspective. In his session at 15th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, will broaden your views to think on an Internet scale by dissecting a video publishing application built with The SoftLayer Platform, Message Queuing, Object Storage, and Drupal. By examining a scalable modular application build that can handle unpredictable traffic, attendees will able to grow your development arsenal and pick up a few strategies to apply to your own projects.
The cloud provides an easy onramp to building and deploying Big Data solutions. Transitioning from initial deployment to large-scale, highly performant operations may not be as easy. In his session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, will discuss the benefits, weaknesses, and performance characteristics of public and bare metal cloud deployments that can help you make the right decisions.
Over the last few years the healthcare ecosystem has revolved around innovations in Electronic Health Record (HER) based systems. This evolution has helped us achieve much desired interoperability. Now the focus is shifting to other equally important aspects – scalability and performance. While applying cloud computing environments to the EHR systems, a special consideration needs to be given to the cloud enablement of Veterans Health Information Systems and Technology Architecture (VistA), i.e., the largest single medical system in the United States.
Cloud and Big Data present unique dilemmas: embracing the benefits of these new technologies while maintaining the security of your organization’s assets. When an outside party owns, controls and manages your infrastructure and computational resources, how can you be assured that sensitive data remains private and secure? How do you best protect data in mixed use cloud and big data infrastructure sets? Can you still satisfy the full range of reporting, compliance and regulatory requirements? In his session at 15th Cloud Expo, Derek Tumulak, Vice President of Product Management at Vormetric, will discuss how to address data security in cloud and Big Data environments so that your organization isn’t next week’s data breach headline.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Is your organization struggling to deal with skyrocketing volumes of digital assets? The amount of data is growing exponentially and organizations are having a hard time managing this growth. In his session at 15th Cloud Expo, Amar Kapadia, Senior Director of Open Cloud Strategy at Seagate, will walk through the essential considerations when developing a cloud storage strategy. In this discussion, you will understand the challenges IT is facing, why companies need to move to cloud, and how the right cloud model can help your business economically overcome the data struggle.
If cloud computing benefits are so clear, why have so few enterprises migrated their mission-critical apps? The answer is often inertia and FUD. No one ever got fired for not moving to the cloud – not yet. In his session at 15th Cloud Expo, Michael Hoch, SVP, Cloud Advisory Service at Virtustream, will discuss the six key steps to justify and execute your MCA cloud migration.
The 16th International Cloud Expo announces that its Call for Papers is now open. 16th International Cloud Expo, to be held June 9–11, 2015, at the Javits Center in New York City brings together Cloud Computing, APM, APIs, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
Most of today’s hardware manufacturers are building servers with at least one SATA Port, but not every systems engineer utilizes them. This is considered a loss in the game of maximizing potential storage space in a fixed unit. The SATADOM Series was created by Innodisk as a high-performance, small form factor boot drive with low power consumption to be plugged into the unused SATA port on your server board as an alternative to hard drive or USB boot-up. Built for 1U systems, this powerful device is smaller than a one dollar coin, and frees up otherwise dead space on your motherboard. To meet the requirements of tomorrow’s cloud hardware, Innodisk invested internal R&D resources to develop our SATA III series of products. The SATA III SATADOM boasts 500/180MBs R/W Speeds respectively, or double R/W Speed of SATA II products.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
SYS-CON Events announced today that Cloudian, Inc., the leading provider of hybrid cloud storage solutions, has been named “Bronze Sponsor” of SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Cloudian is a Foster City, Calif.-based software company specializing in cloud storage. Cloudian HyperStore® is an S3-compatible cloud object storage platform that enables service providers and enterprises to build reliable, affordable and scalable hybrid cloud storage solutions. Cloudian actively partners with leading cloud computing environments including Amazon Web Services, Citrix Cloud Platform, Apache CloudStack, OpenStack and the vast ecosystem of S3 compatible tools and applications. Cloudian's customers include Vodafone, Nextel, NTT, Nifty, and LunaCloud. The company has additional offices in China and Japan.
SYS-CON Events announced today that TechXtend (formerly Programmer’s Paradise), a leading value-added provider of server and storage virtualization, and r-evolution will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. TechXtend (formerly Programmer’s Paradise) is a leading value-added provider of software, systems and solutions for corporations, government organizations, and academic institutions across the United States and Canada. TechXtend is the Exclusive Reseller in the United States for r-evolution