Click here to close now.


SDN Journal Authors: Don MacVittie, Lori MacVittie, Liz McMillan, Dinko Eror, Pat Romanski

Related Topics: @BigDataExpo, Java IoT, Linux Containers, Agile Computing, @CloudExpo, SDN Journal

@BigDataExpo: Blog Feed Post

Scaling Big Data Fabrics

The size of the network might be the least interesting aspect of scaling Big Data fabrics

When people talk about Big Data, the emphasis is usually on the Big. Certainly, Big Data applications are distributed largely because the size of the data on which computations are executed warrants more than a typical application can handle. But scaling the network that provides connectivity between Big Data nodes is not just about creating massive interconnects.

In fact, the size of the network might be the least interesting aspect of scaling Big Data fabrics.

Just how big is Big Data?

Not that long ago, I asked the question: how large is a typical Big Data deployment? I was expecting, as I suspect many people are, that the Big in the title meant that the deployments would be, in a word, big. But the average Big Data deployment is actually far smaller than most people realize. I grabbed a list from HadoopWizard in an article dating back to last year.

What is remarkable about this list is just how unremarkable the sizes of the deployments are. Sure, the list is dated, and deployments have certainly gotten larger. And yes, companies like Yahoo! are pushing scaling limits. But the average deployment if you take Yahoo! out is a mere 113 nodes. Even if every node is multi-homed to two switches, this means the average deployment could be handled by 4 access switches.

Even if every deployment quadrupled, you would still only be talking about 16-access-switch deployments. When our industry talks about scaling, we usually think well beyond 16 switches.

Is scaling an issue?

So if deployments are small, does that mean scaling is a solved issue? The answer is both yes and no. If the end game is building individual networks for each Big Data application, then yes. While the web scale companies will always need more, the vast majority of customers will be well-served by the scaling limits that are around today.

But the issue with Big Data is that it isn’t really just Big Data. When we talk about Big Data, we usually ought to be using a different moniker. For most people, Big Data is less about Hadoop and more about clustered applications (at least so far as the network is concerned). By expanding the definition to clustered applications, you move past Hadoop and into clustered compute and even clustered storage environments. Anything clustered has a dependency on some kind of interconnect.

The challenge in clustered environments

The challenge of all these types of clustered environments is that their requirements vary. For Hadoop, job completion times are dominated by the compute side of things, so the network is really about providing a congestion-free interconnect that is always available. For clustered compute, latency might be more important. And for multi-tenant environments, it might be most important to isolate traffic. Whatever the application, the point is that the requirements are highly contextual.

Which brings us back to scaling.

The real issue in scaling Big Data fabrics is less about making a small interconnect larger. Networks are not going to scale along the lines of single applications (or at least they shouldn’t). The actual scaling challenge is plotting a course from a single Big Data application to an environment that hosts multiple clustered applications, each with different requirements.

This might seem dead simple, but it isn’t. When people deploy Big Data applications today, the Big part leads people to purpose-build architecture with massive data workloads in mind. In many cases, this includes building out separate networks aimed at specific workloads.

But even in the best cases, Hadoop makes use of things like rack awareness, which help provide application resilience while minimizing traffic across the network. Regardless of whether you view this as for the application or for the network, the result is that proximity and locality are built into the infrastructure. This creates interesting considerations (and potentially limitations) when expanding. If you want to grow a cluster, you can’t just use any available server in the datacenter; there are servers that are more preferable than others based solely on their physical location.

Scalability is more than scaling

Making a scalable interconnect for these types of clustered applications is more than just supporting a large (or as I mentioned previously, not so large) number of nodes. The objective for scalability is to provide a graceful path from start to finish. This means architectures need to consider not just what the ending state is but also how to get from here to there.

With Hadoop, this means that things like locality have to be an explicit consideration in architecting the interconnect. Is the right answer a bunch of cross-connects zigzagging across the datacenter? Maybe. Or it might be a different architectural approach to providing interconnect between clustered servers.

Additionally, it isn’t just about one application. Architecting for bandwidth because you have a Hadoop-y application is great, but what if the next clustered application is latency-sensitive? Or if it brings with it a set of auditing and compliance requirements more typical of HIPAA-style applications?

If the architecture doesn’t explicitly consider how to expand beyond a single application, even if it can grow to thousands of switches, it won’t really matter.

The bottom line

The punch line here is that scaling is not only about growing larger. It also means potentially growing more diverse. And if there is one thing that the Hadoop deployment numbers tell me, it’s that people are still experimenting. If you are still experimenting, how can you predict with certainty what the next 5 or 10 years will mean in terms of applications for your business? You can’t. Which means that the most important architectural objective might go well beyond the number of switches in a deployment. Scalability could be about building flexibility into you datacenter. How do you get a bunch of different purpose-built capabilities into a single, general-purpose network? Answering that might be the real key to determining how to scale Big Data fabrics.

[Today’s fun fact: It is against the law to use the Star Spangled Banner as dance music in Massachusetts. There go my party plans!]

The post Scaling Big Data fabrics appeared first on Plexxi.

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@CloudExpo Stories
The modern software development landscape consists of best practices and tools that allow teams to deliver software in a near-continuous manner. By adopting a culture of automation, measurement and sharing, the time to ship code has been greatly reduced, allowing for shorter release cycles and quicker feedback from customers and users. Still, with all of these tools and methods, how can teams stay on top of what is taking place across their infrastructure and codebase? Hopping between services a...
Containers are changing the security landscape for software development and deployment. As with any security solutions, security approaches that work for developers, operations personnel and security professionals is a requirement. In his session at @DevOpsSummit, Kevin Gilpin, CTO and Co-Founder of Conjur, will discuss various security considerations for container-based infrastructure and related DevOps workflows.
DevOps and Continuous Delivery software provider XebiaLabs has announced it has been selected to join the Amazon Web Services (AWS) DevOps Competency partner program. The program is designed to highlight software vendors like XebiaLabs who have demonstrated technical expertise and proven customer success in DevOps and specialized solution areas like Continuous Delivery. DevOps Competency Partners provide solutions to, or have deep experience working with AWS users and other businesses to help t...
Enterprises can achieve rigorous IT security as well as improved DevOps practices and Cloud economics by taking a new, cloud-native approach to application delivery. Because the attack surface for cloud applications is dramatically different than for highly controlled data centers, a disciplined and multi-layered approach that spans all of your processes, staff, vendors and technologies is required. This may sound expensive and time consuming to achieve as you plan how to move selected applicati...
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
Data loss happens, even in the cloud. In fact, if your company has adopted a cloud application in the past three years, data loss has probably happened, whether you know it or not. In his session at 17th Cloud Expo, Bryan Forrester, Senior Vice President of Sales at eFolder, will present how common and costly cloud application data loss is and what measures you can take to protect your organization from data loss.
The cloud has reached mainstream IT. Those 18.7 million data centers out there (server closets to corporate data centers to colocation deployments) are moving to the cloud. In his session at 17th Cloud Expo, Achim Weiss, CEO & co-founder of ProfitBricks, will share how two companies – one in the U.S. and one in Germany – are achieving their goals with cloud infrastructure. More than a case study, he will share the details of how they prioritized their cloud computing infrastructure deployments ...
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete en...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet condit...
Between the compelling mockups and specs produced by analysts, and resulting applications built by developers, there exists a gulf where projects fail, costs spiral, and applications disappoint. Methodologies like Agile attempt to address this with intensified communication, with partial success but many limitations. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, will present a revolutionary model enabled by new technologies. Learn how busine...
Interested in leveraging automation technologies and a cloud architecture to make developers more productive? Learn how PaaS can benefit your organization to help you streamline your application development, allow you to use existing infrastructure and improve operational efficiencies. Begin charting your path to PaaS with OpenShift Enterprise.
Achim Weiss is Chief Executive Officer and co-founder of ProfitBricks. In 1995, he broke off his studies to co-found the web hosting company "Schlund+Partner." The company "Schlund+Partner" later became the 1&1 web hosting product line. From 1995 to 2008, he was the technical director for several important projects: the largest web hosting platform in the world, the second largest DSL platform, a video on-demand delivery network, the largest eMail backend in Europe, and a universal billing syste...
Containers are revolutionizing the way we deploy and maintain our infrastructures, but monitoring and troubleshooting in a containerized environment can still be painful and impractical. Understanding even basic resource usage is difficult - let alone tracking network connections or malicious activity. In his session at DevOps Summit, Gianluca Borello, Sr. Software Engineer at Sysdig, will cover the current state of the art for container monitoring and visibility, including pros / cons and li...
Containers have changed the mind of IT in DevOps. They enable developers to work with dev, test, stage and production environments identically. Containers provide the right abstraction for microservices and many cloud platforms have integrated them into deployment pipelines. DevOps and Containers together help companies to achieve their business goals faster and more effectively.
As a CIO, are your direct reports IT managers or are they IT leaders? The hard truth is that many IT managers have risen through the ranks based on their technical skills, not their leadership ability. Many are unable to effectively engage and inspire, creating forward momentum in the direction of desired change. Renowned for its approach to leadership and emphasis on their people, organizations increasingly look to our military for insight into these challenges.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driv...
There are many considerations when moving applications from on-premise to cloud. It is critical to understand the benefits and also challenges of this migration. A successful migration will result in lower Total Cost of Ownership, yet offer the same or higher level of robustness. Migration to cloud shifts computing resources from your data center, which can yield significant advantages provided that the cloud vendor an offer enterprise-grade quality for your application.
The web app is agile. The REST API is agile. The testing and planning are agile. But alas, data infrastructures certainly are not. Once an application matures, changing the shape or indexing scheme of data often forces at best a top down planning exercise and at worst includes schema changes that force downtime. The time has come for a new approach that fundamentally advances the agility of distributed data infrastructures. Come learn about a new solution to the problems faced by software organ...
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new da...
Cloud computing delivers on-demand resources that provide businesses with flexibility and cost-savings. The challenge in moving workloads to the cloud has been the cost and complexity of ensuring the initial and ongoing security and regulatory (PCI, HIPAA, FFIEC) compliance across private and public clouds. Manual security compliance is slow, prone to human error, and represents over 50% of the cost of managing cloud applications. Determining how to automate cloud security compliance is critical...