Welcome!

SDN Journal Authors: Rishi Bhargava, Pat Romanski, ManageEngine IT Matters, Steven Lamb, John Basso

Related Topics: @BigDataExpo, Java IoT, Linux Containers, Agile Computing, @CloudExpo, SDN Journal

@BigDataExpo: Blog Feed Post

Scaling Big Data Fabrics

The size of the network might be the least interesting aspect of scaling Big Data fabrics

When people talk about Big Data, the emphasis is usually on the Big. Certainly, Big Data applications are distributed largely because the size of the data on which computations are executed warrants more than a typical application can handle. But scaling the network that provides connectivity between Big Data nodes is not just about creating massive interconnects.

In fact, the size of the network might be the least interesting aspect of scaling Big Data fabrics.

Just how big is Big Data?

Not that long ago, I asked the question: how large is a typical Big Data deployment? I was expecting, as I suspect many people are, that the Big in the title meant that the deployments would be, in a word, big. But the average Big Data deployment is actually far smaller than most people realize. I grabbed a list from HadoopWizard in an article dating back to last year.

What is remarkable about this list is just how unremarkable the sizes of the deployments are. Sure, the list is dated, and deployments have certainly gotten larger. And yes, companies like Yahoo! are pushing scaling limits. But the average deployment if you take Yahoo! out is a mere 113 nodes. Even if every node is multi-homed to two switches, this means the average deployment could be handled by 4 access switches.

Even if every deployment quadrupled, you would still only be talking about 16-access-switch deployments. When our industry talks about scaling, we usually think well beyond 16 switches.

Is scaling an issue?

So if deployments are small, does that mean scaling is a solved issue? The answer is both yes and no. If the end game is building individual networks for each Big Data application, then yes. While the web scale companies will always need more, the vast majority of customers will be well-served by the scaling limits that are around today.

But the issue with Big Data is that it isn’t really just Big Data. When we talk about Big Data, we usually ought to be using a different moniker. For most people, Big Data is less about Hadoop and more about clustered applications (at least so far as the network is concerned). By expanding the definition to clustered applications, you move past Hadoop and into clustered compute and even clustered storage environments. Anything clustered has a dependency on some kind of interconnect.

The challenge in clustered environments

The challenge of all these types of clustered environments is that their requirements vary. For Hadoop, job completion times are dominated by the compute side of things, so the network is really about providing a congestion-free interconnect that is always available. For clustered compute, latency might be more important. And for multi-tenant environments, it might be most important to isolate traffic. Whatever the application, the point is that the requirements are highly contextual.

Which brings us back to scaling.

The real issue in scaling Big Data fabrics is less about making a small interconnect larger. Networks are not going to scale along the lines of single applications (or at least they shouldn’t). The actual scaling challenge is plotting a course from a single Big Data application to an environment that hosts multiple clustered applications, each with different requirements.

This might seem dead simple, but it isn’t. When people deploy Big Data applications today, the Big part leads people to purpose-build architecture with massive data workloads in mind. In many cases, this includes building out separate networks aimed at specific workloads.

But even in the best cases, Hadoop makes use of things like rack awareness, which help provide application resilience while minimizing traffic across the network. Regardless of whether you view this as for the application or for the network, the result is that proximity and locality are built into the infrastructure. This creates interesting considerations (and potentially limitations) when expanding. If you want to grow a cluster, you can’t just use any available server in the datacenter; there are servers that are more preferable than others based solely on their physical location.

Scalability is more than scaling

Making a scalable interconnect for these types of clustered applications is more than just supporting a large (or as I mentioned previously, not so large) number of nodes. The objective for scalability is to provide a graceful path from start to finish. This means architectures need to consider not just what the ending state is but also how to get from here to there.

With Hadoop, this means that things like locality have to be an explicit consideration in architecting the interconnect. Is the right answer a bunch of cross-connects zigzagging across the datacenter? Maybe. Or it might be a different architectural approach to providing interconnect between clustered servers.

Additionally, it isn’t just about one application. Architecting for bandwidth because you have a Hadoop-y application is great, but what if the next clustered application is latency-sensitive? Or if it brings with it a set of auditing and compliance requirements more typical of HIPAA-style applications?

If the architecture doesn’t explicitly consider how to expand beyond a single application, even if it can grow to thousands of switches, it won’t really matter.

The bottom line

The punch line here is that scaling is not only about growing larger. It also means potentially growing more diverse. And if there is one thing that the Hadoop deployment numbers tell me, it’s that people are still experimenting. If you are still experimenting, how can you predict with certainty what the next 5 or 10 years will mean in terms of applications for your business? You can’t. Which means that the most important architectural objective might go well beyond the number of switches in a deployment. Scalability could be about building flexibility into you datacenter. How do you get a bunch of different purpose-built capabilities into a single, general-purpose network? Answering that might be the real key to determining how to scale Big Data fabrics.

[Today’s fun fact: It is against the law to use the Star Spangled Banner as dance music in Massachusetts. There go my party plans!]

The post Scaling Big Data fabrics appeared first on Plexxi.

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@CloudExpo Stories
Redis is not only the fastest database, but it is the most popular among the new wave of databases running in containers. Redis speeds up just about every data interaction between your users or operational systems. In his session at 19th Cloud Expo, Dave Nielsen, Developer Advocate, Redis Labs, will share the functions and data structures used to solve everyday use cases that are driving Redis' popularity.
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
Predictive analytics tools monitor, report, and troubleshoot in order to make proactive decisions about the health, performance, and utilization of storage. Most enterprises combine cloud and on-premise storage, resulting in blended environments of physical, virtual, cloud, and other platforms, which justifies more sophisticated storage analytics. In his session at 18th Cloud Expo, Peter McCallum, Vice President of Datacenter Solutions at FalconStor, discussed using predictive analytics to mon...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
SYS-CON Events announced today that Isomorphic Software will exhibit at DevOps Summit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Isomorphic Software provides the SmartClient HTML5/AJAX platform, the most advanced technology for building rich, cutting-edge enterprise web applications for desktop and mobile. SmartClient combines the productivity and performance of traditional desktop software with the simp...
In his session at @DevOpsSummit at 19th Cloud Expo, Yoseph Reuveni, Director of Software Engineering at Jet.com, will discuss Jet.com's journey into containerizing Microsoft-based technologies like C# and F# into Docker. He will talk about lessons learned and challenges faced, the Mono framework tryout and how they deployed everything into Azure cloud. Yoseph Reuveni is a technology leader with unique experience developing and running high throughput (over 1M tps) distributed systems with extre...
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
As companies gain momentum, the need to maintain high quality products can outstrip their development team’s bandwidth for QA. Building out a large QA team (whether in-house or outsourced) can slow down development and significantly increases costs. This eBook takes QA profiles from 5 companies who successfully scaled up production without building a large QA team and includes: What to consider when choosing CI/CD tools How culture and communication can make or break implementation
"When you think about the data center today, there's constant evolution, The evolution of the data center and the needs of the consumer of technology change, and they change constantly," stated Matt Kalmenson, VP of Sales, Service and Cloud Providers at Veeam Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
Extreme Computing is the ability to leverage highly performant infrastructure and software to accelerate Big Data, machine learning, HPC, and Enterprise applications. High IOPS Storage, low-latency networks, in-memory databases, GPUs and other parallel accelerators are being used to achieve faster results and help businesses make better decisions. In his session at 18th Cloud Expo, Michael O'Neill, Strategic Business Development at NVIDIA, focused on some of the unique ways extreme computing is...
"We view the cloud not really as a specific technology but as a way of doing business and that way of doing business is transforming the way software, infrastructure and services are being delivered to business," explained Matthew Rosen, CEO and Director at Fusion, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
To leverage Continuous Delivery, enterprises must consider impacts that span functional silos, as well as applications that touch older, slower moving components. Managing the many dependencies can cause slowdowns. See how to achieve continuous delivery in the enterprise.
SYS-CON Events announced today the Kubernetes and Google Container Engine Workshop, being held November 3, 2016, in conjunction with @DevOpsSummit at 19th Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA. This workshop led by Sebastian Scheele introduces participants to Kubernetes and Google Container Engine (GKE). Through a combination of instructor-led presentations, demonstrations, and hands-on labs, students learn the key concepts and practices for deploying and maintainin...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Security, data privacy, reliability, and regulatory compliance are critical factors when evaluating whether to move business applications from in-house, client-hosted environments to a cloud platform. Quality assurance plays a vital role in ensuring that the appropriate level of risk assessment, verification, and validation takes place to ensure business continuity during the migration to a new cloud platform.