Welcome!

SDN Journal Authors: Yeshim Deniz, Liz McMillan, Elizabeth White, Pat Romanski, TJ Randall

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, Agile Computing, @DXWorldExpo

@CloudExpo: Article

Understanding Application Performance on the Network | Part 4

Packet Loss

We know that losing packets is not a good thing; retransmissions cause delays. We also know that TCP ensures reliable data delivery, masking the impact of packet loss. So why are some applications seemingly unaffected by the same packet loss rate that seems to cripple others? From a performance analysis perspective, how do you understand the relevance of packet loss and avoid chasing red herrings?

In Part II, we examined two closely related constraints - bandwidth and congestion. In Part III, we discussed TCP slow-start and introduced the Congestion Window (CWD). In Part IV, we'll focus on packet loss, continuing the concepts from these two previous entries.

TCP Reliability
TCP ensures reliable delivery of data through its sliding window approach to managing byte sequences and acknowledgements; among other things, this sequencing allows a receiver to inform the sender of missing data caused by packet loss in multi-packet flows. Independently, a sender may detect packet loss through the expiration of its retransmission timer. We will look at the behavior and performance penalty associated with each of these cases; generally, the impact of packet loss will depend on both the characteristics of the flow and the position of the dropped packet within the flow.

The Retransmission Timer
Each packet a node sends is associated with a retransmission timer; if the timer expires before the sent data has been acknowledged, it is considered lost and retransmitted. There are two important characteristics of the retransmission timer that relate to performance. First, the default value for the initial retransmission timeout (RTO) is almost always 3000 milliseconds; this is adjusted to a more reasonable value as TCP observes actual path round-trip times. Second, the timeout value is doubled for subsequent retransmissions of a packet.

In small flows (a common characteristic of chatty operations - like web pages), the retransmission timer is the method used to detect packet loss. Consider a request or reply message of just 1000 bytes, sent in a single packet; if this packet is dropped, there will of course be no acknowledgement; the receiver has no idea the packet was sent. If the packet is dropped early in the life of a TCP connection - perhaps one of the SYN packets during the TCP 3-way handshake, or an initial GET request or a 304 Not Modified response - the dropped packet will be retransmitted only after 3 seconds have elapsed.

Triple Duplicate ACK
Within larger flows, a dropped packet may be detected before the retransmission time expires if the sender receives three duplicate ACKs; this is generally more efficient (faster) than waiting for the retransmission timer to expire. As the receiving node receives packets that are out of sequence (i.e., after the missing packet data should have been seen), it sends duplicate ACKs, the acknowledgement number repeatedly referencing the expected (missing) packet data. When the sending node receives the third duplicate ACK, it assumes the packet was in fact lost (not just delayed) and retransmits it. This event causes the sender to assume network congestion, reducing its congestion window by 50% to allow congestion to subside. Slow-start begins to increase the CWD from that new value, using a relatively conservative congestion avoidance ramp.

As an example, consider a server sending a large file to a client; the sending node is ramping up through slow-start. As the CWD reaches 24, earlier packet loss is detected via a triple duplicate ACK; the lost data is retransmitted, and the CWD is reduced to 12. Slow-start resumes from this point in its congestion avoidance mode.

While arguments abound about the inefficiency of existing congestion avoidance approaches, especially on high-speed networks, you can expect to see this behavior in today's networks.

Transaction Trace Illustration
Identifying retransmission timeouts using merged trace files is generally quite straightforward; we have proof the packet has been lost (because we see it on the sending side and not on the receiving side), and we know the delay between the dropped and retransmitted packets at the sending node. The Delta column in the Error Table indicates the retransmission delay.

Error Table entry showing a 3-second retransmission delay caused by a retransmission timeout (RTO)

For larger flows, you can illustrate the effect of dropped packets on the sender's Congestion Window by using the Time Plot view. For Series 1, graph the sender's Frames in Transit; this is essentially the CWD. For Series 2, graph the Cumulative Error Count in both directions. As errors (retransmitted packets or out-of-sequence packets) occur, the CWD will be reduced by about 50%.

Time Plot view showing the impact of packet loss (blue plot) on the Congestion Window (brown plot)

For more networking tips click here for the full article

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


CloudEXPO Stories
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. SD-WAN helps enterprises to take advantage of the exploding landscape of cloud applications and services, due to its unique capability to support all things cloud related.
In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and GM, discussed how clients in this new era of innovation can apply data, technology, plus human ingenuity to springboard to advance new business value and opportunities.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
DXWorldEXPO LLC announced today that "IoT Now" was named media sponsor of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. IoT Now explores the evolving opportunities and challenges facing CSPs, and it passes on some lessons learned from those who have taken the first steps in next-gen IoT services.
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to the new world.