Welcome!

SDN Journal Authors: Yeshim Deniz, Liz McMillan, Elizabeth White, Pat Romanski, TJ Randall

Related Topics: Microservices Expo, Java IoT, Linux Containers, Machine Learning , Agile Computing, @DXWorldExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 3

TCP Slow-Start

In Part II, we discussed performance constraints caused by both bandwidth and congestion. Purposely omitted was a discussion about packet loss - which is often an inevitable result of heavy network congestion. I'll use this blog entry on TCP slow-start to introduce the Congestion Window (CWD), which is fundamental for Part IV's in-depth review of Packet Loss.

TCP Slow-Start
TCP uses a slow-start algorithm as it tries to understand the characteristics (bandwidth, latency, congestion) of the path supporting a new TCP connection. In most cases, TCP has no inherent understanding of the characteristics of the network path; it could be a switched connection on a high-speed LAN to a server in the next room, or it could be a low-bandwidth, already congested connection to a server halfway around the globe. In an effort to be a good network citizen, TCP uses a slow-start algorithm based on an internally-maintained congestion window (CWD) which identifies how many packets may be transmitted without being acknowledged; as the data carried in transmitted packets is acknowledged, the window increases. The CWD typically begins at two packets, allowing an initial transmission of two packets and then ramping up quickly as acknowledgements are received.

At the beginning of a new TCP connection, the CWD starts at two packets and increases as acknowledgements are received.

The CWD will continue to increase until one of three conditions is met:

Condition

Determined by

Blog discussion

Receiver's TCP Window limit

Receiver's TCP Window size

Part VII

Congestion detected (via packet loss)

Triple Duplicate ACK

Part IV

Maximum write block size

Application configuration

Part VIII

Generally, TCP slow-start will not be a primary or significant bottleneck. Slow-start occurs once per TCP connection, so for many operations there may be no impact. However, we will address the theoretical case of a TCP slow-start bottleneck, some influencing factors, and then present a real-world case.

The Maximum Segment Size and the CWD
The Maximum Segment Size (MSS) identifies the maximum TCP payload that can be carried by a packet; this value is set as a TCP option as a new connection is established. Probably the most common MSS value is 1460, but smaller sizes may be used to allow for VPN headers or to support different link protocols. Beyond the additional protocol overhead introduced by a reduced MSS, there is also an impact on the CWD, since the algorithm uses packets as its flow control metric.

We can consider the CWD's exchanges of data packets and subsequent ACKs as TCP turns, or TCP round trips; each exchange incurs the round-trip path delay. Therefore, one of the primary factors influencing the impact of TCP slow-start is network latency. A smaller MSS value will result in a larger number of packets - and additional TCP turns - as the sending node increases the CWD to reach its upper limit. It is possible that with a small MSS (536 Bytes) and high path delay (200 msec) that slow-start might introduce 3 seconds of delay to an operation as the CWD increases to a receive window limit of 65KB.

How Important Is TCP Slow-Start?
While significant, even a 3-second delay is probably not interesting for large file transfers, or for applications that reuse TCP connections. But let's consider a simple web page with 20 page elements, averaging about 120KB in size. A misconfigured proxy server prevents persistent TCP connections, so we'll need 20 new TCP connections to load the page. Each connection must ramp up through slow-start as content is downloaded. With a small MSS and/or high latency, each page component will experience a significant slow-start delay.

For more network performance insight from click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


CloudEXPO Stories
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. SD-WAN helps enterprises to take advantage of the exploding landscape of cloud applications and services, due to its unique capability to support all things cloud related.
In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and GM, discussed how clients in this new era of innovation can apply data, technology, plus human ingenuity to springboard to advance new business value and opportunities.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
DXWorldEXPO LLC announced today that "IoT Now" was named media sponsor of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. IoT Now explores the evolving opportunities and challenges facing CSPs, and it passes on some lessons learned from those who have taken the first steps in next-gen IoT services.
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to the new world.