Welcome!

SDN Journal Authors: Liz McMillan, Yeshim Deniz, Elizabeth White, Pat Romanski, TJ Randall

Related Topics: @DevOpsSummit, Java IoT, Microservices Expo, Containers Expo Blog, @CloudExpo, SDN Journal

@DevOpsSummit: Blog Feed Post

Application-Driven vs Feature-Driven Orchestration

One of the challenges in scaling modern data centers rises directly from an increase in network complexity

One of the challenges in scaling modern data centers rises directly from an increase in network complexity over the past few years. We can argue why complexity has increased, but it's reasonable to say that scaling data centers means more boxes - more servers, more network gear, more middle boxes - and every device (or service) you add increases the complexity of the topology and thus the operational overhead to manage it. Organizations agree - things are somewhat or substantially getting more complex.

changes in ntework complexity

Software-defined architectures attempt to answer this challenge (among several others) by operationalizing the network. By using APIs to orchestrate provisioning processes and enable the integration necessary to make use of actionable monitoring data generated by various systems across the data center, software-defined architectures accelerate application deployments and reduce risk by eliminating a source of error - manual configuration.

Now, you might think that's where it all ends. But it doesn't. Because the way in which an API is presented and used to enable automation and orchestration can actually introduce the very same complexity that it attempts to address in the first place.

There are basically two ways to approach provisioning and orchestration: application-driven or feature-driven.

Feature-Driven Orchestration

Feature-driven orchestration is so named because the granularity of the API is, basically, at a feature (or capability) level. What that means is that the API exposes individual configuration options and automation systems must invoke each one (often in the right order) to achieve the desired result.

Something like a simple load balancing service is simple only from the perspective of execution, not configuration. A load balancing service requires a virtual IP address (the end point to which clients connect), a pool of resources (each with their own IP addresses and potentially VLAN membership), an algorithm and any associated thresholds and metrics that may be required and health monitors to ensure compliance with availability and performance expectations.

You can imagine that, if the number of applications being load balanced by this service is large enough, that the number of repetitive steps required to configure the service will become as unwieldy as a manual configuration.

feature-driven-integrationThe same is true of other application services typically provided by the network, such as those concerned with performance, security and access. Each has a unique set of "steps" that must be performed in the right order to provision a service.

Feature-driven orchestration requires the provisioning engine (or orchestration system) to drive each and every step. That adds complexity to an already complex process, because you really are just tossing a thin veneer of "automation" over an existing method of configuration. Feature-driven orchestration is pretty much manual configuration (line by line) driven by a script. Instead of worrying about fat-fingering a parameter, now you have to worry about catching fifteen or twenty different exceptions and status results and handling them properly from a script.

Application-Driven Orchestration

Application-driven orchestration, on the other hand, takes advantage of constructs like service templates and policies to enable a less complex method of integration with provisioning and orchestration systems.

Rather than focus on encapsulating commands into API calls as is the case with feature-driven orchestration, application-driven orchestration focuses on aggregating only the data necessary to execute a provisioning workflow. This data is encoded in a policy or template and handed over to the service to be acted upon. The service takes the policy or template and manages the provisioning process internally, ensuring that the expected order of operations is followed and eliminating the need for operators to handle exceptions and corner cases and special status codes themselves.

Application-driven orchestration offers a safer and more efficient approach to provisioning.

application-driven-provisioning

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An application-driven orchestration approach not only accelerates application deployment and maintains a lower risk profile but it also enables application migration across disparate environments.

Configuring a service in one environment, driven by a specific provisioning or orchestration engine, is a very specific task. Moving the application and the service to, say,a cloud environment would mean duplicating that same effort again with another provisioning or orchestration engine.

An application-driven approach that leverages templates and policies, on the other hand, can make it possible to migrate an application without incurring the cost and time associated with the repetitive integration work required by feature-driven orchestration. The policy or template can migrate with the application and easily be used to provision the same services - with the same characteristics - in the cloud environment, without incurring a whole lot of time or effort.

APis are a good thing. They're a key enabler of software-defined architectures like SDDC, cloud and SDN. But API-enabling infrastructure doesn't necessarily mean only on a checkbox and radio-button basis. That can be valuable but it can also lead to integration efforts that are just as complex (or more so) than their manual counterparts. A template or policy-based (application-driven) approach  coupled with an API through which to deliver and execute such constructs results in a much cleaner, more consistent and stable means of integrating provisioning processes into the greater software-defined architecture.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

CloudEXPO Stories
Sanjeev Sharma Joins November 11-13, 2018 @DevOpsSummit at @CloudEXPO New York Faculty. Sanjeev Sharma is an internationally known DevOps and Cloud Transformation thought leader, technology executive, and author. Sanjeev's industry experience includes tenures as CTO, Technical Sales leader, and Cloud Architect leader. As an IBM Distinguished Engineer, Sanjeev is recognized at the highest levels of IBM's core of technical leaders.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a member of the Society of Information Management (SIM) Atlanta Chapter. She received a Business and Economics degree with a minor in Computer Science from St. Andrews Presbyterian University (Laurinburg, North Carolina). She resides in metro-Atlanta (Georgia).
We are in a digital age however when one looks for their dream home, the mortgage process can take as long as 60 days to complete. Not what we expect in a time where processes are known to take place swiftly and seamlessly. Mortgages businesses are facing the heat and are in immediate need of upgrading their operating model to reduce costs, decrease the processing time and enhance the customer experience. Therefore, providers are exploring multiple ways of tapping emerging technologies to solve this industry problem. During this session, Chander Damodaran, Chief Blockchain Architect at Brillio Technologies, will discuss how blockchain could transform the mortgage business and its value chain. Blockchain can bridge the gap and provide a seamless digital channel to enable quicker and transparent mortgage processing thereby elevating the overall experience and helping drive costs down.
This session describes how Professional Services organisations can deliver within Technology-as-a-Service (IaaS) constructs, in private and public enterprise cloud scenarios. See how professional services can be packaged and funded by IaaS cash flows, based upon consumption of technology services. Learn how significant, IT infrastructure transformations can be funded through OPEX spending models with multi-year As-a-Services based contracts. Understand how the automation of repeatable services can positively impact the commercial viability of Professional Services within As-a-Service constructs. Hear how innovative IT infrastructure service offerings can elevate the impact of professional services engagements, and accelerate positive business outcomes.
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and European perspective.