Welcome!

SDN Journal Authors: Liz McMillan, Yeshim Deniz, Elizabeth White, Pat Romanski, TJ Randall

Related Topics: @DevOpsSummit, Java IoT, Linux Containers, Containers Expo Blog, @CloudExpo, SDN Journal

@DevOpsSummit: Blog Feed Post

Where Networks and Application Architecture Converge Lies DevOps

All key areas of IT are all converged on a singular focus: applications

On this side is a variant of SDN: network service virtualization (NSV). On the other side is an emerging application architecture: microservices. Where they meet lies devops.

One of the most fascinating things to watch in the technological shifts occurring today is to see them all converging on a singular point: applications. Whether it's securing or delivering, deploying or access, all key areas of IT are all converged on a singular focus: applications.

shifts center on applications

 

From a developer-turned-network-geek perspective, that's doubly interesting. That's because one impacts the other, and vice-versa. One of the trends in application architecture today is a shift toward microservices. I'll oversimplify for a moment and explain that as SOA without all the baggage. A recent post on High Scalability explains the architecture - and the impact on infrastructure requirements:

Where a monolithic application might have been deployed to a small application server cluster, you now have tens of separate services to build, test, deploy and run, potentially in polyglot languages and environments.

All of these services potentially need clustering for failover and resilience, turning your single monolithic system into, say, 20 services consisting of 40-60 processes after we've added resilience.

 

Throw in load balancers and messaging layers for plumbing between the services and the estate starts to become pretty large when compared to that single monolithic application that delivered the equivalent business functionality!

Microservices - Not A Free Lunch!

Now let's shift gears and peek at what's going on over in network land. You might recall we recently discussed network service virtualization. If not, here's a quick summary from Nick Lippis:

NSV seeks to virtualize enterprise appliances, such as firewalls, load balancers, application accelerators, application delivery controllers, Intrusion Protection Systems, WAN optimizers, call managers, etc., instantiated for each application. Each instance of each NSV is created for a specific application. That is, if there are 10 applications that require network services, then each application will be configured with its own instantiation of that service. That is, 10 applications, then 10 NSV firewalls.

In short, NSV seeks to virtualize network services by creating an instance of the network service for each application versus virtualizing a network service once for all applications. NSV hopes to present significant capex and opex relief from hardware appliances, as well as an efficient way of applying network services to applications without chaining or tagging packets and rapid automated, on-demand application deployment.

Lippis Report 217: It’s Network Service Virtualization in the Enterprise rather than Network Function Virtualization

Reading both, one might assume some level of collusion between the two but that's unlikely to be the case. The divide between application architects and networky groups is well established; they really don't play well together. And yet both these trends recognize the need to meet in the middle, in the L4-7 service layer, to provide for scalability and other "plumbing" services.

From a scalability perspective, this is very much a verticle partitioning-based scalability pattern, where load is spread across distinct functional boundaries of a problem space, each handled by different processing units. Those functional boundaries in today's architectures are embodied by microservice definitions. One service is responsible for a discrete function, as the point of microservices is, to a large extent, to decompose monolithic applications into individual, domain (functional) specific services.

Overall, this means services can be scaled individually on-demand, which is far more efficient than scaling a monolithic application. But it does introduce complexity, as there are necessarily more moving parts, and it does tend to complicate monitoring and force the need for more application-centric monitoring.

A Symbiotic Relationship
The application architect recognizes the need and, to some extent, laments the complexity it will introduce. Network service virtualization, on the other side, offers to fulfill the need and recognizes the need for efficiency and, ultimately, simplification in providing them in a "rapid automated, on-demand" fashion.

These issues - the plumbing and the monitoring - fall squarely into the realm of issues that can be resolved by applying devops to operations. Automated provisioning, treating infrastructure as code, and enabling a more holistic view of "applications" are all enabling capabilities of what devops aims to achieve.

For one of the first times I can remember, the operational burden imposed by technological shifts in application architecture is nearly simultaneously being addressed by the technological shifts in the network. In fact, one could argue that the shifts occurring in the network toward network service virtualization are actually enabling the shift in application architecture. Being able to rapidly provision, manage and monitor the L4-7 services necessary to deliver microservices increases the ability to take advantage of the architecture.

Like the question of the chicken and the egg, it really doesn't matter which came first. What matters is that they're complementary and both driving toward the same goal: accelerated application deployment and delivery of an exceptional end user experience.

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

CloudEXPO Stories
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to the new world.
DXWorldEXPO LLC announced today that ICC-USA, a computer systems integrator and server manufacturing company focused on developing products and product appliances, will exhibit at the 22nd International CloudEXPO | DXWorldEXPO. DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City. ICC is a computer systems integrator and server manufacturing company focused on developing products and product appliances to meet a wide range of computational needs for many industries. Their solutions provide benefits across many environments, such as datacenter deployment, HPC, workstations, storage networks and standalone server installations. ICC has been in business for over 23 years and their phenomenal range of clients include multinational corporations, universities, and small businesses.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a member of the Society of Information Management (SIM) Atlanta Chapter. She received a Business and Economics degree with a minor in Computer Science from St. Andrews Presbyterian University (Laurinburg, North Carolina). She resides in metro-Atlanta (Georgia).
In his session at 20th Cloud Expo, Mike Johnston, an infrastructure engineer at Supergiant.io, discussed how to use Kubernetes to set up a SaaS infrastructure for your business. Mike Johnston is an infrastructure engineer at Supergiant.io with over 12 years of experience designing, deploying, and maintaining server and workstation infrastructure at all scales. He has experience with brick and mortar data centers as well as cloud providers like Digital Ocean, Amazon Web Services, and Rackspace. His expertise is in automating deployment, management, and problem resolution in these environments, allowing his teams to run large transactional applications with high availability and the speed the consumer demands.
Everyone wants the rainbow - reduced IT costs, scalability, continuity, flexibility, manageability, and innovation. But in order to get to that collaboration rainbow, you need the cloud! In this presentation, we'll cover three areas: First - the rainbow of benefits from cloud collaboration. There are many different reasons why more and more companies and institutions are moving to the cloud. Benefits include: cost savings (reducing on-prem infrastructure, reducing data center foot print, reducing IT support costs), enabling growth (ensuring a highly available, highly scalable infrastructure), increasing employee access & engagement (by having collaboration tools that are usable and available globally regardless of location there will be an increased connectedness amongst teams and individuals that will help increase both efficiency and productivity.)