Click here to close now.

Welcome!

SDN Journal Authors: Elizabeth White, Liz McMillan, Pat Romanski, Yeshim Deniz, Carmen Gonzalez

Related Topics: Cloud Expo, Java, Big Data Journal, SDN Journal

Cloud Expo: Blog Feed Post

The Promise of SaaS Customer Success Metrics

We are witnessing the evolution of SaaS metrics beyond simple, historical financial measures

Over the past few years, the SaaS community has gained a solid understanding of SaaS financial metrics, as well as many of the operational principles required to achieve them. However, there has always been an obvious gap between what happens on the top line and what happens on the ground. It’s one thing to claim that a 50% reduction in churn will result in a 2X increase in recurring revenue, but it’s quite another thing to make it happen. Achieving that 50% reduction in churn is usually a tedious and unreliable process of trial and error. This is about to change. As the SaaS industry matures, we are witnessing the evolution of SaaS metrics beyond simple, historical financial measures toward sophisticated operational measures in the form of new SaaS customer success metrics and predictive analytics.

saas customer success metrics kpi dashboard

We are witnessing the evolution of SaaS metrics beyond simple, historical financial measures
toward sophisticated SaaS customer success metrics and predictive analytics.

This is the second post in a series inspired by my ongoing collaboration with Bluenose Analytics that explores the new Metrics-driven SaaS Business and its foundation of emerging best practices in customer success metrics. [Attention SaaS CFO's and VP's of Customer Success! Please see the exclusive invitation at the end of this post if you like this series and would like to explore more in person.] The first post discussed the unique qualities of SaaS that enable the Metrics-driven SaaS business to apply a more analytic approach to management than traditional licensed software. This second post drills down on the promise of customer success metrics to bring greater rigor to the processes of churn reduction, upselling and customer success management for increased recurring revenue and decreased recurring costs of service.

saas customer success metrics

Tweet it!

An Ocean of Customer Success Data

The promise of customer success metrics is immense. Unfortunately, so is the challenge of developing them. From the initial capture of a prospect’s email address to the final cancellation of a churning customer account, the Metrics-driven SaaS Business collects and analyzes customer data. At the very beginning of a SaaS customer’s lifetime, a cookie is dropped and the usage clock starts ticking as web visits turn into trial accounts. That initial email is complemented with profile information captured on sign-up forms and augmented by third-party databases. Sales and marketing kick in and engagement activities are recorded in CRMs and marketing automation systems. Finally, a purchase is made and the ecommerce engine captures the transaction and forwards it to the financial systems for future billing. Then, the real action starts. Customers log in to the product again and again. Every important click is recorded and every customer success activity is logged.

saas customer success metrics ocean of data

The SaaS customer success metrics challenge is a big data problem,
requiring powerful data collection engines and sophisticated statistical models.

Collecting the data, unfortunately, is not even half of the battle. The Metrics-driven SaaS Business must make good use of it, turning data into information and information into action. Compared to the SaaS metrics challenge of previous years where all we had to do was master a relatively short list of SaaS financial metrics, the SaaS customer success metrics challenge is truly daunting–a bona fide big data problem. There is just no way to make sense of these volumes of data without powerful data collection engines and sophisticated descriptive and predictive statistical models. Simply defining the relevant customer success metrics is a difficult problem onto itself. But for the very first time, we have the law of large numbers tilting in our favor and the benefit it offers for reducing churn and accelerating customer acquisition far outweigh the costs.

Driving SaaS Customer Success with Metrics

The SaaS profit equation from the previous post and repeated below shows the five key financial levers of SaaS businesses, the two volume drivers: current customers and new customers, and the three units of value: recurring revenue per customer, recurring service cost per customer, and acquisition cost per customer.

SaaS profit =
current customers x ( avg recurring revenue – avg recurring cost )
– new customers x avg acquisition cost

[ Note: For the accountants in the audience,
this should look a lot like activity-based costing. Because it is. ;) ]

As SaaS executives, our financial goals are very simple: make business decisions that push these financial levers in the right directions to increase revenue and reduce costs. The challenge of maximizing SaaS profit is easily divided between the ‘current customer’ half of the calculation and the ‘new customer, half. SaaS business organizations and operating plans are often similarly divided into servicing current customers and acquiring new customers.

This second post in The Metrics-driven SaaS Business series focuses on the ‘current customers’ half. The next post in the series will focus on the ‘new customer’ half. As mentioned earlier though, pushing these financial levers is much easier said than done. Planning to increase revenue by increasing current customers with a 30% reduction in churn is easy. Reducing churn by 30% is hard. The following sections take a look at the first three financial levers: current customers (churn), average cost of service (customer success efficiency) and average recurring revenue per customer (upsells) and the principal role of SaaS customer success metrics in creating and executing operating plans that actually push them.

Leveraging Root Cause Analysis to Reduce SaaS Churn

By far the lowest hanging fruit of SaaS customer success metrics is their use in SaaS churn reduction. For a SaaS business of any reasonable size, churn uniformly represents the largest financial drain on SaaS growth and profit. Its simple math, ‘current customers’ is almost always the largest number in our SaaS profit equation above. SaaS churn is also a great place to start our exploration of SaaS customer success metrics, because at its heart, SaaS churn is a statistical concept, so modeling it operationally is fundamentally a statistical problem.

customer success metrics churn statistics

Tweet it!

[Note: If you tweeted the quote above, CONGRATULATIONS!
Welcome to the club of true SaaS metrics geeks! ]

SaaS churn represents the probability that a customer will cancel in a given period. That probability is determined by a number of factors: the value the customer sees in your SaaS product, the customer’s reliance on your SaaS product, the potential value of competitor offerings, and the internal priorities and politics within the customer’s organization. The Metrics-driven SaaS Business gathers and analyzes information on all of these predictors. Customer profiles in CRMs and accounting systems combined with direct product usage data go a very long way in describing the first two, whereas the less visible ones can be tackled through customer success surveys and expert ratings by executives, sales reps, support reps, and customer success reps.

saas customer success metrics root cause analysis

With an ocean of customer success data and the law of large numbers on our side,
we can apply well known statistical methods to identify the root causes of churn

Once we have collected the relevant information, we can apply well known statistical methods to identify the root causes of churn. There are a number of descriptive statistical methods that apply from simple cross tabulation of churn cohorts to more advanced methods like logistic regression and survival analysis. Statistics aside, we expect to find insights, such as customers in healthcare are more likely to churn than customers in financial services. If a customer has not logged in in the last 30 days, it is at severe risk of churn. Customers that use our reporting module frequently are our best advocates, and so forth. With the right data and the right analytics, root causes of churn can consistently be identified and addressed, a significant improvement over simply reducing churn from 15% to 10% in our financial forecast without having a clue as to how it will be achieved.

Predictive Analytics with SaaS Customer Success Metrics

Once we have a better understanding of why past customers churn, we can create models that predict the risk that a specific current customer will churn in the future. With sound predictions, the customer success organization can take action to prevent SaaS churn before it happens. At their heart, most of these statistical methods are simply scoring systems that estimate the probability of a given event, in the case of churn it is the probability that a customer will cancel. The predictors in our models and the models themselves can therefore be used to create key performance indicators (KPIs) for customer success that are tracked on a regular basis for each and every customer. For example, we may find that customers that stop using our product for a two week period are at a higher risk of churn, and that the risk increases the longer they do not use the system. This metric and the regression that produced it can both be used to create KPIs.

SaaS Customer Success Metrics and Product Use

Customer success metrics based on product usage data is the secret sauce within the Metrics-driven SaaS Business. In a sense, churn is simply the opposite of use. The more a customer uses your SaaS product, the less likely the customer is to churn. Not only does use indicate how much the customer values your product, prolonged use correlates strongly with switching costs. Customer success metrics that track inadequate use are key indicators of churn, while those that track deep and frequent use are strong indicators of customer advocacy. One of the smartest applications of customer success metrics based on product use is driving product use itself. By identifying customers that are struggling with your product, you can uncover opportunities to improve the user experience, offer help and education, and of course reduce churn.

saas customer success metrics product usage data

Product usage data is the secret sauce within the Metrics-driven SaaS Business.
In a sense, churn is simply the opposite of use.

Improving SaaS Customer Success Efficiency through Metrics

The same KPIs that we use for churn reduction can be applied to improve the efficiency of the customer success organization and thereby lower cost of service. They key is to go beyond simply monitoring and modeling customer success metrics to embedding them in the daily workflow of customer success reps. From the preceding example, if we know that customers that have stop using our product for two weeks are in need of immediate attention, then we can use this information to create dashboards and alerts for customer success reps. The primary goal is to direct the attention of customer success reps to customers where the reps can have the greatest impact on financial results. Conversely, the secondary goal is to not waste time on customer success activities that have no influence on the success of a customer.

The beauty of SaaS customer success metrics over SaaS financial metrics is that they apply at the individual customer level. Moreover, they can be rolled up along any dimension, such as time, customer type, product module, customer success rep, etc. to create a detailed picture of our customer success operation. At the individual account level, they can be used to create a scorecard or health index for every single account to help customer success reps monitor and manage their territories. At the aggregate level, they can be used to design the customer success territories themselves, so that customer success reps are deployed to customer accounts in the right numbers and with the right mix of skills. Customer success managers are usually familiar with a straightforward small, medium and large account approach to territory design, however, it might just be that your large accounts have the least risk of churn and the least potential for upsell! SaaS customer success metrics provide much stronger guidance and many more dimensions from which to choose for territory design.

Driving Upsells with SaaS Customer Success Metrics

SaaS customer Success metrics can also improve upselling to increase average recurring revenue per customer, the next financial lever in our SaaS profit equation. By applying the same types of statistical models we used in churn reduction to analyze past upsell purchases across customer demographics, product usage data, and so forth, we can develop predictive models and scores for upselling. Again, we can embed these models and KPIs into the daily activities of customer success reps or account managers to direct them to the accounts with the greatest upsell potential at any given time. Finally, we can use the predictive models within the product itself to automatically trigger communications with high potential customers and facilitate purchase.

Attention SaaS CFOs and VPs of Customer Success!

I will be speaking at an exclusive CFO only dinner sponsored by Bluenose Analytics this coming Tuesday, April 29 in San Francisco. Please email me directly at joelyork [at] chaotic-flow.com if you are interested in attending. This event is part of a larger, ongoing series designed to create an intimate setting for SaaS industry leaders (10-15 at a time at a nice restaurant) where they can discuss and evolve SaaS business best practices for finance and customer success. There are only a few spots left for next Tuesday, however, if there is sufficient demand, we will likely repeat it. There are also upcoming dinners focused on Customer Success operational best practices for VP’s Customer Success. If you are interested in these, please email me and I will send you the agenda. Bluenose is also considering expanding these dinners to multiple cities, so let me know even if you are not in the Bay Area.

Thanks again for following Chaotic Flow!

Cheers,

JY

PS Dinner is free!

Read the original blog entry...

More Stories By Joel York

Joel York is an Internet software executive and popular SaaS / Cloud blogger at Chaotic Flow and Cloud Ave. He is well known for his work in SaaS / cloud business models, sales and marketing strategy, and financial metrics. Professionally, he has managed global sales and marketing organizations serving over 50 countries, including local offices in the United States, United Kingdom, Germany, and India. He holds degrees in physics from Caltech and Cornell and received his MBA from the University of Chicago. Joel York is currently VP Marketing at Meltwater Group and Principal at the Internet startup consulting firm affinitos.

@CloudExpo Stories
Containers Expo Blog covers the world of containers, as this lightweight alternative to virtual machines enables developers to work with identical dev environments and stacks. Containers Expo Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Bookmark Containers Expo Blog ▸ Here Follow new article posts on Twitter at @ContainersExpo
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. 8th International Big Data Expo, co-located with 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. As advanced data storage, access and analytics technologies aimed at handling high-volume and/or fast moving data all move center stage, aided by the cloud computing bo...
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the...
You use an agile process; your goal is to make your organization more agile. But what about your data infrastructure? The truth is, today's databases are anything but agile - they are effectively static repositories that are cumbersome to work with, difficult to change, and cannot keep pace with application demands. Performance suffers as a result, and it takes far longer than it should to deliver new features and capabilities needed to make your organization competitive. As your application an...
Move from reactive to proactive cloud management in a heterogeneous cloud infrastructure. In his session at 16th Cloud Expo, Manoj Khabe, Innovative Solution-Focused Transformation Leader at Vicom Computer Services, Inc., will show how to replace a help desk-centric approach with an ITIL-based service model and service-centric CMDB that’s tightly integrated with an event and incident management platform. Learn how to expand the scope of operations management to service management. He will al...
Over the years, a variety of methodologies have emerged in order to overcome the challenges related to project constraints. The successful use of each methodology seems highly context-dependent. However, communication seems to be the common denominator of the many challenges that project management methodologies intend to resolve. In this respect, Information and Communication Technologies (ICTs) can be viewed as powerful tools for managing projects. Few research papers have focused on the way...
As the world moves from DevOps to NoOps, application deployment to the cloud ought to become a lot simpler. However, applications have been architected with a much tighter coupling than it needs to be which makes deployment in different environments and migration between them harder. The microservices architecture, which is the basis of many new age distributed systems such as OpenStack, Netflix and so on is at the heart of CloudFoundry – a complete developer-oriented Platform as a Service (PaaS...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, ...
High-performing enterprise Software Quality Assurance (SQA) teams validate systems that are ready for use - getting most actively involved as components integrate and form complete systems. These teams catch and report on defects, making sure the customer gets the best software possible. SQA teams have leveraged automation and virtualization to execute more thorough testing in less time - bringing Dev and Ops together, ensuring production readiness. Does the emergence of DevOps mean the end of E...
The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential. The DevOps Summit at Cloud Expo – to be held June 3-5, 2015, at the Javits Center in New York City – will expand the DevOps community, enable a wide...
The term culture has had a polarizing effect among DevOps supporters. Some propose that culture change is critical for success with DevOps, but are remiss to define culture. Some talk about a DevOps culture but then reference activities that could lead to culture change and there are those that talk about culture change as a set of behaviors that need to be adopted by those in IT. There is no question that businesses successful in adopting a DevOps mindset have seen departmental culture change, ...
Amazon and Google have built software-defined data centers (SDDCs) that deliver massively scalable services with great efficiency. Yet, building SDDCs has proven to be a near impossibility for companies without hyper-scale resources. In his session at 15th Cloud Expo, David Cauthron, CTO and Founder of NIMBOXX, highlighted how a mid-sized manufacturer of global industrial equipment bridged the gap from virtualization to software-defined services, streamlining operations and costs while connect...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series dat...
Cloud Expo, Inc. has announced today that Andi Mann returns to DevOps Summit 2015 as Conference Chair. The 4th International DevOps Summit will take place on June 9-11, 2015, at the Javits Center in New York City. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited to help the great team at ...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue o...
Enterprises are fast realizing the importance of integrating SaaS/Cloud applications, API and on-premises data and processes, to unleash hidden value. This webinar explores how managers can use a Microservice-centric approach to aggressively tackle the unexpected new integration challenges posed by proliferation of cloud, mobile, social and big data projects. Industry analyst and SOA expert Jason Bloomberg will strip away the hype from microservices, and clearly identify their advantages and d...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using ...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enter...
EMC Corporation on Tuesday announced it has entered into a definitive agreement to acquire privately held Virtustream. When the transaction closes, Virtustream will form EMC’s new managed cloud services business. The acquisition represents a transformational element of EMC’s strategy to help customers move all applications to cloud-based IT environments. With the addition of Virtustream, EMC completes the industry’s most comprehensive hybrid cloud portfolio to support all applications, all workl...
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers ...