Welcome!

SDN Journal Authors: Elizabeth White, Pat Romanski, Liz McMillan, Greg Schulz, Jerome McFarland

Related Topics: @BigDataExpo, Microservices Expo, Containers Expo Blog, @CloudExpo, SDN Journal, @DevOpsSummit

@BigDataExpo: Article

Shots Across the Data Lake

Big Data Analytics Range War

Range Wars
The settling of the American West brought many battles between ranchers and farmers over access to water. The farmers claimed land near the water and fenced it to protect their crops. But the farmers' fences blocked the ranchers' cattle from reaching the water. Fences were cut; shots were fired; it got ugly.

About a century later, with the first tech land rush of the late1980s and early '90s - before the Web - came battles between those who wanted software and data to be centrally controlled on corporate servers and those who wanted it to be distributed to workers' desktops. Oracle and IBM versus Microsoft and Lotus. Database versus Spreadsheet.

Now, with the advent of SoMoClo (Social, Mobile, Cloud) technologies and the Big Data they create, have come battles between groups on different sides of the "Data Lake" over how it should be controlled, managed, used, and paid for. Operations versus Strategy. BI versus Data Science. Governance versus Discovery.  Oversight versus Insight.

The range wars of the Old West were not a fight over property ownership, but rather over access to natural resources. The farmers and their fences won that one, for the most part.

Those tech battles in the enterprise are fights over access to the "natural" resource of data and to the tools for managing and analyzing it.

In the '90s and most of the following decade, the farmers won again. Data was harvested from corporate systems and piled high in warehouses, with controlled accessed by selected users for milling it into Business Intelligence.

But now in the era of Big Data Analytics, it is not looking so good for the farmers. The public cloud, open source databases, and mobile tablets are all chipping away at the centralized command-and-control infrastructure down by the riverside.  And, new cloud based Big Data analytics solution providers like BigML, Yottamine (my company) and others are putting unprecedented analytical power in the hands of the data ranchers.

A Rainstorm, Not a River
Corporate data is like a river - fed by transaction tributaries and dammed into databases for controlled use in business irrigation.

Big Data is more like a relentless rainstorm - falling heavily from the cloud and flowing freely over and around corporate boundaries, with small amounts channeled into analytics and most draining to the digital deep.

Many large companies are failing to master this new data ecology because they are trying to do Big Data analytics in the same way, with the same tools as they did with BI, and that will never work. There is a lot more data, of course, but it is different data - tweets, posts, pictures, clicks, GPS, etc., not RDBMS records - and different analytics - discovery and prediction, not reporting and evaluation.

Successfully gleaning business value from the Big Data rainstorm requires new tools and maybe new rules.

Embracing Shadows
These days, tech industry content readers frequently see the term "Shadow IT" referring to how business people are using new technologies to process and analyze information without the help of "real IT".  SoMoClo by another, more sinister name.  Traditionalists see it as a threat to corporate security and stability and modernists a boon to cost control and competitiveness.

But, it really doesn't matter which view is right.  Advanced analytics on Big Data takes more computing horsepower than most companies can afford.  Jobs like machine learning from the Twitter Fire Hose will take hundreds or even thousands of processor cores and terabytes of memory (not disk!) to build accurate and timely predictive models.

Most companies will have no choice but to embrace the shadow and use AWS or some other elastic cloud computing service, and new, more scalable software tools to do effective large scale advanced analytics.

Time for New Rules?
Advanced Big Data analytics projects, the ones of a scale that only the cloud can handle, are being held back by reservations over privacy, security and liability that in most cases turn out to be needless concerns.

If the data to be analyzed were actual business records for customers and transactions as it is in the BI world, those concerns would be reasonable.  But more often than not, advanced analytics does not work that way.  Machine learning and other advanced algorithms do not look at business data. They look at statistical information derived from business data, usually in the form of an inscrutable mass of binary truth values that is only actionable to the algorithm.  That is what gets sent to the cloud, not the customer file.

If you want to do advanced cloud-scale Big Data analytics and somebody is telling you it is against the rules, you should look at the rules.  They probably don't even apply to what you are trying to do.

First User Advantage
Advanced Big Data analytics is sufficiently new and difficult that not many companies are doing much of it yet.  But where BI helps you run a tighter ship, Big Data analytics helps you sink your enemy's fleet.

Some day, technologies like high performance statistical machine learning will be ubiquitous and the business winners will be the ones who uses the software best.  But right now, solutions are still scarce and the business winners are ones willing to use the software at all.

More Stories By Tim Negris

Tim Negris is SVP, Marketing & Sales at Yottamine Analytics, a pioneering Big Data machine learning software company. He occasionally authors software industry news analysis and insights on Ulitzer.com, is a 25-year technology industry veteran with expertise in software development, database, networking, social media, cloud computing, mobile apps, analytics, and other enabling technologies.

He is recognized for ability to rapidly translate complex technical information and concepts into compelling, actionable knowledge. He is also widely credited with coining the term and co-developing the concept of the “Thin Client” computing model while working for Larry Ellison in the early days of Oracle.

Tim has also held a variety of executive and consulting roles in a numerous start-ups, and several established companies, including Sybase, Oracle, HP, Dell, and IBM. He is a frequent contributor to a number of publications and sites, focusing on technologies and their applications, and has written a number of advanced software applications for social media, video streaming, and music education.

@CloudExpo Stories
In his session at 18th Cloud Expo, Sagi Brody, Chief Technology Officer at Webair Internet Development Inc., will focus on real world deployments of DDoS mitigation strategies in every layer of the network. He will give an overview of methods to prevent these attacks and best practices on how to provide protection in complex cloud platforms. He will also outline what we have found in our experience managing and running thousands of Linux and Unix managed service platforms and what specifically c...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
Much of the value of DevOps comes from a (renewed) focus on measurement, sharing, and continuous feedback loops. In increasingly complex DevOps workflows and environments, and especially in larger, regulated, or more crystallized organizations, these core concepts become even more critical. In his session at @DevOpsSummit at 18th Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, will show how, by focusing on 'metrics that matter,' you can provide objective, transparent, and meaningfu...
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
Many private cloud projects were built to deliver self-service access to development and test resources. While those clouds delivered faster access to resources, they lacked visibility, control and security needed for production deployments. In their session at 18th Cloud Expo, Steve Anderson, Product Manager at BMC Software, and Rick Lefort, Principal Technical Marketing Consultant at BMC Software, will discuss how a cloud designed for production operations not only helps accelerate developer...
trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vice president of product management, IoT solutions at GlobalSign, will teach IoT developers how t...
Redis is not only the fastest database, but it has become the most popular among the new wave of applications running in containers. Redis speeds up just about every data interaction between your users or operational systems. In his session at 18th Cloud Expo, Dave Nielsen, Developer Relations at Redis Labs, will shares the functions and data structures used to solve everyday use cases that are driving Redis' popularity.
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
Struggling to keep up with increasing application demand? Learn how Platform as a Service (PaaS) can streamline application development processes and make resource management easy.
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
In the world of DevOps there are ‘known good practices’ – aka ‘patterns’ – and ‘known bad practices’ – aka ‘anti-patterns.' Many of these patterns and anti-patterns have been developed from real world experience, especially by the early adopters of DevOps theory; but many are more feasible in theory than in practice, especially for more recent entrants to the DevOps scene. In this power panel at @DevOpsSummit at 18th Cloud Expo, moderated by DevOps Conference Chair Andi Mann, panelists will dis...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
If there is anything we have learned by now, is that every business paves their own unique path for releasing software- every pipeline, implementation and practices are a bit different, and DevOps comes in all shapes and sizes. Software delivery practices are often comprised of set of several complementing (or even competing) methodologies – such as leveraging Agile, DevOps and even a mix of ITIL, to create the combination that’s most suitable for your organization and that maximize your busines...
Up until last year, enterprises that were looking into cloud services usually undertook a long-term pilot with one of the large cloud providers, running test and dev workloads in the cloud. With cloud’s transition to mainstream adoption in 2015, and with enterprises migrating more and more workloads into the cloud and in between public and private environments, the single-provider approach must be revisited. In his session at 18th Cloud Expo, Yoav Mor, multi-cloud solution evangelist at Cloudy...
Peak 10, Inc., has announced the implementation of IT service management, a business process alignment initiative based on the widely adopted Information Technology Infrastructure Library (ITIL) framework. The implementation of IT service management enhances Peak 10’s current service-minded approach to IT delivery by propelling the company to deliver higher levels of personalized and prompt service. The majority of Peak 10’s operations employees have been trained and certified in the ITIL frame...
See storage differently! Storage performance problems have only gotten worse and harder to solve as applications have become largely virtualized and moved to a cloud-based infrastructure. Storage performance in a virtualized environment is not just about IOPS, it is about how well that potential performance is guaranteed to individual VMs for these apps as the number of VMs keep going up real time. In his session at 18th Cloud Expo, Dhiraj Sehgal, in product and marketing at Tintri, will discu...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.