Welcome!

SDN Journal Authors: Daniel Gordon, John Walsh, Elizabeth White, Liz McMillan, Sven Olav Lund

Related Topics: @DXWorldExpo, Java IoT, Microservices Expo, Containers Expo Blog, @CloudExpo, SDN Journal

@DXWorldExpo: Article

Columnar vs. Key-Value Storage Models

Pay attention to specific configuration and tuning around three points

What are the performance differences between in-memory columnar databases like SAP HANA and GridGain's In-Memory Database (IMDB) utilizing distributed key-value storage? This questions comes up regularly in conversations with our customers and the answer is not very obvious.

Storage Models
First off, let's clearly state that we are talking about storage model only and its implications on performance for various use cases. It's important to note that:

  • Storage model doesn't dictate of preclude a particular transactionality or consistency guarantees; there are columnar databases that support ACID (HANA) and those that don't (HBase); there are distributed key-value databases that support ACID (GridGain) and those that don't (for example, Riak and memcached).
  • Storage model doesn't dictate specific query language; using above examples - GridGain and HANA support SQL - HBase, for example, doesn't.

Unlike transactionality and query language - performance considerations, however, are not that straightforward.

Note also: SAP HANA has pluggable storage model and experimental row-based storage implementation. We'll concentrate on columnar storage that apparently accounts for all HANA usage at this point.

HANA's Columnar Storage Model
Let's recall what columnar storage model entails in general and note its HANA specifics.

Some of its stand out characteristics include:

  • Data in columnar model is kept in column (vs. rows as in row storage models).
  • Since data in a single column is almost always homogeneous it's frequently compressed for storage (especially in in-memory systems like HANA).
  • Aggregate functions (i.e. column functions) are very fast on columnar data model since the entire column can be fetched very quickly and effectively indexed.
  • Inserts, updates and row functions, however, are significantly slower than their row-based counterparts as a trade-off of columnar approach (inserting a row leads to multiple columns inserts). Because of this characteristic - columnar databased typically used in R/OLAP scenario (where data doesn't change) and very rarely in OLTP use cases (where data changes frequently).
  • Since columnar storage is fairly compact it doesn't generally require distribution (i.e. data partitioning) to store large datasets - the entire database can often be logically stored in memory of a single server. HANA, however, provides comprehensive support for data partitioning.

It is important to emphasize that columnar storage model is ideally suited for very compact memory utilization for the two main reasons:

  • Columnar model is a naturally fit for compression which often provides for dramatic reduction in memory consumption.
  • Since column-based functions are very fast - there is no need for materialized views for aggregated values in exchange for simply computing necessary values on the fly; this leads to significantly reduced memory footprint as well.

GridGain's IMDB Key-Value Storage Model
Key-value (KV) storage model is less defined than its columnar counterpart and usually involves a fair amount of vendor specifics.

Historically, there are two schools of KV storage models:

  • Traditional (examples include Riak, memcached, Redis). The common characteristic of these systems is a raw, language independent storage format for the keys and values.
  • Data Grid (examples include GridGain IMDB, GigaSpaces, Coherence). The common trait of these systems is the reliance on JVM as underlying runtime platform, and treating keys and values as user-defined JVM objects.

GridGain's IMDB belongs to Data Grid branch of KV storage models. Some of its key characteristics are:

  • Data is stored in a set of distributed maps (a.k.a. dictionaries or caches); in a simple approximation you can think of a value as a row in row-based model, and a key as that row's primary key. Following this analogy a single KV map can be approximated as row-based table with automatic primary key index.
  • Keys and values are represented as user-defined JVM objects and therefore no automatic compression can be performed.
  • Data distribution is designed from the ground up. Data is partitioned across the cluster mitigating, in part, lack of compression. Unlike HANA - data partitioning is mandatory.
  • MapReduce is the main API for data processing (SQL is supported as well).
  • Strong affinity and co-location semantics provided by default.
  • No bias towards aggregate or row-based processing performance and therefore no bias towards either OLAP or OLTP applicability.

Performance Considerations
It is somewhat expected that for heavy transactional processing GridGain will provide overall better performance in most cases:

  • Columnar model is rather inefficient in updating or inserting values in multiple columns.
  • Transactional locking is also less efficient in columnar model.
  • Required de-compression and re-compression further degrades performance.
  • KV storage model, on the other hand, provides an ideal model for individual updates as individual objects can be accessed, locked and updated very effectively.
  • Lack of compression in GridGain IMDB makes updates go even faster than in columnar model with compression.

As an example, GridGain just won a public tender for one of the biggest financial institutions in the world achieving 1 billion transactional updates per second on 10 commodity blades costing less than $25K all together. That transactional performance and associated TCO is clearly not the territory any columnar database can approach.

For OLAP workloads the picture is less obvious. HANA is heavily biased towards OLAP processing, and GridGain IMDB is neutral towards it. Both GridGain IMDB and SAP HANA provides comprehensive data partitioning capabilities and allow for processing parallelization - MPP traits necessary for scale out OLAP processing. I believe the actual difference observed by the customers will be driven primarily by three factors rooted deeply in differences between columnar and KV implementations in respective products:

  • Optimizations around data affinity and co-location.
  • Optimizations around the distribution overhead.
  • Optimizations around indexing of partitioned data.

Unfortunately - there's no way to provide any generalized guidance on performance difference here... We always recommend to try both in your particular scenario, pay attention to specific configuration and tuning around three points mentioned above - and see what results you'll get. It does take time and resources - but you may be surprised by your findings!

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@CloudExpo Stories
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Conference Guru has been named “Media Sponsor” of the 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great deals to gre...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNative) and process redefinition (SRE). Rob Hirschfeld’s recent work in Kubernetes operations has led to the conclusion that containers and related platforms have changed the way we should be thinking about DevOps and...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
The next XaaS is CICDaaS. Why? Because CICD saves developers a huge amount of time. CD is an especially great option for projects that require multiple and frequent contributions to be integrated. But… securing CICD best practices is an emerging, essential, yet little understood practice for DevOps teams and their Cloud Service Providers. The only way to get CICD to work in a highly secure environment takes collaboration, patience and persistence. Building CICD in the cloud requires rigorous ar...
Companies are harnessing data in ways we once associated with science fiction. Analysts have access to a plethora of visualization and reporting tools, but considering the vast amount of data businesses collect and limitations of CPUs, end users are forced to design their structures and systems with limitations. Until now. As the cloud toolkit to analyze data has evolved, GPUs have stepped in to massively parallel SQL, visualization and machine learning.
"Evatronix provides design services to companies that need to integrate the IoT technology in their products but they don't necessarily have the expertise, knowledge and design team to do so," explained Adam Morawiec, VP of Business Development at Evatronix, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...
"ZeroStack is a startup in Silicon Valley. We're solving a very interesting problem around bringing public cloud convenience with private cloud control for enterprises and mid-size companies," explained Kamesh Pemmaraju, VP of Product Management at ZeroStack, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
Enterprises are adopting Kubernetes to accelerate the development and the delivery of cloud-native applications. However, sharing a Kubernetes cluster between members of the same team can be challenging. And, sharing clusters across multiple teams is even harder. Kubernetes offers several constructs to help implement segmentation and isolation. However, these primitives can be complex to understand and apply. As a result, it’s becoming common for enterprises to end up with several clusters. Thi...
"Infoblox does DNS, DHCP and IP address management for not only enterprise networks but cloud networks as well. Customers are looking for a single platform that can extend not only in their private enterprise environment but private cloud, public cloud, tracking all the IP space and everything that is going on in that environment," explained Steve Salo, Principal Systems Engineer at Infoblox, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventio...
In his session at 21st Cloud Expo, James Henry, Co-CEO/CTO of Calgary Scientific Inc., introduced you to the challenges, solutions and benefits of training AI systems to solve visual problems with an emphasis on improving AIs with continuous training in the field. He explored applications in several industries and discussed technologies that allow the deployment of advanced visualization solutions to the cloud.
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, provided a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to oper...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
Gemini is Yahoo’s native and search advertising platform. To ensure the quality of a complex distributed system that spans multiple products and components and across various desktop websites and mobile app and web experiences – both Yahoo owned and operated and third-party syndication (supply), with complex interaction with more than a billion users and numerous advertisers globally (demand) – it becomes imperative to automate a set of end-to-end tests 24x7 to detect bugs and regression. In th...