Welcome!

SDN Journal Authors: Pat Romanski, Destiny Bertucci, Liz McMillan, Elizabeth White, Amitabh Sinha

Related Topics: @DXWorldExpo, Java IoT, Microservices Expo, Containers Expo Blog, @CloudExpo, SDN Journal

@DXWorldExpo: Article

Columnar vs. Key-Value Storage Models

Pay attention to specific configuration and tuning around three points

What are the performance differences between in-memory columnar databases like SAP HANA and GridGain's In-Memory Database (IMDB) utilizing distributed key-value storage? This questions comes up regularly in conversations with our customers and the answer is not very obvious.

Storage Models
First off, let's clearly state that we are talking about storage model only and its implications on performance for various use cases. It's important to note that:

  • Storage model doesn't dictate of preclude a particular transactionality or consistency guarantees; there are columnar databases that support ACID (HANA) and those that don't (HBase); there are distributed key-value databases that support ACID (GridGain) and those that don't (for example, Riak and memcached).
  • Storage model doesn't dictate specific query language; using above examples - GridGain and HANA support SQL - HBase, for example, doesn't.

Unlike transactionality and query language - performance considerations, however, are not that straightforward.

Note also: SAP HANA has pluggable storage model and experimental row-based storage implementation. We'll concentrate on columnar storage that apparently accounts for all HANA usage at this point.

HANA's Columnar Storage Model
Let's recall what columnar storage model entails in general and note its HANA specifics.

Some of its stand out characteristics include:

  • Data in columnar model is kept in column (vs. rows as in row storage models).
  • Since data in a single column is almost always homogeneous it's frequently compressed for storage (especially in in-memory systems like HANA).
  • Aggregate functions (i.e. column functions) are very fast on columnar data model since the entire column can be fetched very quickly and effectively indexed.
  • Inserts, updates and row functions, however, are significantly slower than their row-based counterparts as a trade-off of columnar approach (inserting a row leads to multiple columns inserts). Because of this characteristic - columnar databased typically used in R/OLAP scenario (where data doesn't change) and very rarely in OLTP use cases (where data changes frequently).
  • Since columnar storage is fairly compact it doesn't generally require distribution (i.e. data partitioning) to store large datasets - the entire database can often be logically stored in memory of a single server. HANA, however, provides comprehensive support for data partitioning.

It is important to emphasize that columnar storage model is ideally suited for very compact memory utilization for the two main reasons:

  • Columnar model is a naturally fit for compression which often provides for dramatic reduction in memory consumption.
  • Since column-based functions are very fast - there is no need for materialized views for aggregated values in exchange for simply computing necessary values on the fly; this leads to significantly reduced memory footprint as well.

GridGain's IMDB Key-Value Storage Model
Key-value (KV) storage model is less defined than its columnar counterpart and usually involves a fair amount of vendor specifics.

Historically, there are two schools of KV storage models:

  • Traditional (examples include Riak, memcached, Redis). The common characteristic of these systems is a raw, language independent storage format for the keys and values.
  • Data Grid (examples include GridGain IMDB, GigaSpaces, Coherence). The common trait of these systems is the reliance on JVM as underlying runtime platform, and treating keys and values as user-defined JVM objects.

GridGain's IMDB belongs to Data Grid branch of KV storage models. Some of its key characteristics are:

  • Data is stored in a set of distributed maps (a.k.a. dictionaries or caches); in a simple approximation you can think of a value as a row in row-based model, and a key as that row's primary key. Following this analogy a single KV map can be approximated as row-based table with automatic primary key index.
  • Keys and values are represented as user-defined JVM objects and therefore no automatic compression can be performed.
  • Data distribution is designed from the ground up. Data is partitioned across the cluster mitigating, in part, lack of compression. Unlike HANA - data partitioning is mandatory.
  • MapReduce is the main API for data processing (SQL is supported as well).
  • Strong affinity and co-location semantics provided by default.
  • No bias towards aggregate or row-based processing performance and therefore no bias towards either OLAP or OLTP applicability.

Performance Considerations
It is somewhat expected that for heavy transactional processing GridGain will provide overall better performance in most cases:

  • Columnar model is rather inefficient in updating or inserting values in multiple columns.
  • Transactional locking is also less efficient in columnar model.
  • Required de-compression and re-compression further degrades performance.
  • KV storage model, on the other hand, provides an ideal model for individual updates as individual objects can be accessed, locked and updated very effectively.
  • Lack of compression in GridGain IMDB makes updates go even faster than in columnar model with compression.

As an example, GridGain just won a public tender for one of the biggest financial institutions in the world achieving 1 billion transactional updates per second on 10 commodity blades costing less than $25K all together. That transactional performance and associated TCO is clearly not the territory any columnar database can approach.

For OLAP workloads the picture is less obvious. HANA is heavily biased towards OLAP processing, and GridGain IMDB is neutral towards it. Both GridGain IMDB and SAP HANA provides comprehensive data partitioning capabilities and allow for processing parallelization - MPP traits necessary for scale out OLAP processing. I believe the actual difference observed by the customers will be driven primarily by three factors rooted deeply in differences between columnar and KV implementations in respective products:

  • Optimizations around data affinity and co-location.
  • Optimizations around the distribution overhead.
  • Optimizations around indexing of partitioned data.

Unfortunately - there's no way to provide any generalized guidance on performance difference here... We always recommend to try both in your particular scenario, pay attention to specific configuration and tuning around three points mentioned above - and see what results you'll get. It does take time and resources - but you may be surprised by your findings!

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@CloudExpo Stories
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software. They hope to capture value from emerging technologies such as IoT, SDN, and AI. Ultimately, irrespective of the vertical, it is about deriving value from independent software applications participating in an ecosystem as one comprehensive solution. In his session at @ThingsExpo, Kausik Sridhar, founder and CTO of Pulzze Systems, discussed how given the magnitude of today's application ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.