Welcome!

SDN Journal Authors: Destiny Bertucci, Liz McMillan, Pat Romanski, Elizabeth White, Amitabh Sinha

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, @DXWorldExpo, SDN Journal

@CloudExpo: Article

Replication & Erasure Coding Is the Future for Cloud Storage & Big Data

Organizations are increasingly turning to cloud storage infrastructures to manage their data

In the course of IT history, many schemes have been devised and deployed to protect data against storage system failure, especially disk drive hardware. These protection mechanisms have nearly always been variants on two themes: duplication of files or objects (backup, archiving, synchronization, remote replication come to mind); or parity-based schemes at disk level (RAID) or at object level (erasure coding, often also referred to as Reed-Solomon coding). Regardless of implementation details, the latter always consists of the computation and storage of "parity" information over a number of data entities (whether disks, blocks or objects). Many different parity schemes exist, offering a wide range of protection trade-offs between capacity overhead and protection level - hence their interest.

Erasure Coding
As of late, erasure coding has received a lot of attention in the object storage field as a ‘one-size-fits-all' approach to content protection. This is a stretch. Erasure coding is a solid approach to storage footprint reduction for an interesting but bounded field of use cases, involving both large streams and large clusters, but at the cost of sacrificing the numerous use cases that involve small streams, small clusters, or a combination of the two.

Most readers will be familiar with the concept of RAID content protection on hard disk drives. For example, the contents of a set of five drives is used to compute the contents of what is called a parity drive adding one more drive to the RAID set for a total of six drives. Of the total set of sox, if any single drive fails, the content that is lost can be rebuilt from the five remaining drives. Aside such a 5+1 scheme, many others are possible, where even multiple drives can fail simultaneously and yet the full content can be rebuilt: there is a continuum in the trade-off between footprint and robustness.

More recently, the same class of algorithms that is used for RAID has been applied to the world of object storage: they are commonly called Erasure Codes. The concept is similar: imagine an object to be stored in a cluster. Now, rather than storing and replicating it wholly we will cut the incoming stream into (say) six segments in a 5:1 scheme each with parity information. Similar to the RAID mechanism above, any missing segment out of the six can be rebuilt from the five remaining ones, hence the one. This provides a mechanism to survive a failed disk drive without making a full replica: the footprint overhead is just 20% here rather than 100% with comparable data durability.

Beyond this "5+1" scheme, many more Erasure Coding (EC) schemes are possible. They can survive as many disk failures as their number of parity segments: a 10+6 scheme can survive six simultaneous segment failures without data loss, for instance. Here the overhead will be 60% ((10+6)/10).

Erasure Coding Comes with Trade-offs
The underlying objective is clear: provide protection against failure at a lower footprint cost. However, as usual, there is no such thing as a ‘free lunch.' There are trade-offs to be considered when compared to replication. The key is to have the freedom to choose the best protection for each particular use case.

When chopping up objects to store the resulting segments across a number  of nodes, the "physical" object count of the underlying storage system is multiplied (e.g., for a 10:6 scheme, it's multiplied by 16). Not all competing object storage systems handle high object count well. It is also clear that the granularity (i.e., minimum file size) of the underlying file system or object storage system will play a role in suggesting how small an object can be to be economically stored using erasure coding. It doesn't really make sense from an efficiency perspective to store, say, a 50K object using a 10:6 erasure coding scheme if there is a file system at the core of a storage system. This is because file systems still segment files into blocks with minimum block sizes. A common threshold for this block size for a Linux file system is 32K so the resulting storage needed for a 50K file using a 10:6 erasure coding scheme would be would be 512K (32K * 16 segments) or a 10X increase in footprint. As we will see replication is a much better approach for small files.

Replication
The simplest form of protective data redundancy is replication, with one or more additional copies of an "original" object being created and maintained to be available if that original somehow gets damaged or lost. In spite of the recent hype around erasure coding, we will see that there still are substantial use case areas where replication clearly is the superior option. For the sake of the example, imagine a cluster of a 100 CPUs with one disk drive each, and 50 million objects with two replicas each, 100 million objects grand total. When we speak of replicas in this context, we mean an instance - any instance - of an object; there is no notion of "original" or "copy." Two replicas equal a grand total of two instances of a given object, somewhere in the cluster, on two randomly different nodes. When an object loss is detected, a recovery cycle begins. Data loss only occurs if both replicas are lost, which is why it is important to store replicas on different nodes and if possible different locations. It is also important to have efficient and rapid recovery cycles; you want to ensure that your objects are quickly replicated in case of an overlapping recovery cycle, which may lead to data loss. If there are three replicas per object, three overlapping recovery cycles (a very low probability event) will be required to cause any data loss.

Replication and Erasure Combined Is the Answer
As so often in IT, there is no single perfect solution to a wide array of use cases. In object storage applications, cluster sizes run the gamut between just a few nodes built into a medical imaging modality to thousands of nodes spanning multiple data centers, with object sizes ranging between just a few Kilobytes for an email message and hundreds of Gigabytes for seismic activity data sets. If we want to fulfill the economic and manageability promises of the single unified storage, we need technology that is fully capable of seamlessly adapting between those use cases.

To deal with the velocity and variability of unstructured information, organizations are increasingly turning to cloud storage infrastructures to manage their data in a cost-effective, just-in-time manner, while others may need the robustness of Big Data repositories to handle the volume that today's boundless storage requires. A combination of both replication and erasure coding, combined into a singular object storage solution, will provide the best option to access and analyze data regardless of object size, object count or storage amount while ensuring data integrity aligned with business value. Traditional file systems simply cannot provide the ease of management and accessibility required for cloud storage, nor will they provide the massive scalability and footprint efficiency required for Big Data repositories. The future of both cloud storage and Big Data remain firmly entrenched in an object storage solution that incorporates both replication and erasure coding into its architecture to overcome the limitations of either one technology.

To see an in depth paper on "Replication and Erasure Coding Explained" please visit http://www.caringo.com/

More Stories By Paul Carpentier

Paul Carpentier is CTO and Founder of Caringo. Known as the father of the Content Addressing concept, He invented the patent pending scalable and upgradeable security that is at the heart of Caringo. He was the architect of SequeLink — the first client/server middleware product to connect heterogeneous front ends running over multiple networks to multiple databases on the server side.

Paul founded Wave Research and conceived FileWave, the first fully automated, model-driven software distribution and management system. At FilePool, he invented the technology that created the Content Addressed Storage industry. FilePool, was sold to EMC who turned CAS into a multi-billion dollar marketplace. Caringo CAStor, based on two of Mr. Carpentier's six patents promises to revolutionize the data storage business in much the same manner that CAS created a whole new marketplace.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software. They hope to capture value from emerging technologies such as IoT, SDN, and AI. Ultimately, irrespective of the vertical, it is about deriving value from independent software applications participating in an ecosystem as one comprehensive solution. In his session at @ThingsExpo, Kausik Sridhar, founder and CTO of Pulzze Systems, discussed how given the magnitude of today's application ...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...