Welcome!

SDN Journal Authors: Yeshim Deniz, Liz McMillan, Elizabeth White, Pat Romanski, TJ Randall

Related Topics: @DXWorldExpo, Java IoT, Containers Expo Blog, Cloud Security, SDN Journal

@DXWorldExpo: Blog Post

Big Data and Banking – More than Hadoop | @CloudExpo [#BigData]

Do you think Visa, or any bank for that matter, uses just batch analytics to provide fraud detection?

Fraud is definitely top of mind for all banks. Steve Rosenbush at the Wall Street Journal recently wrote about Visa’s new Big Data analytic engine which has changed the way the company combats fraud. Visa estimates that its new Big Data fraud platform has identified $2 billion in potential annual incremental fraud savings. With Big Data, their new analytic engine can study as many as 500 aspects of a transaction at once. That’s a sharp improvement from the company’s previous analytic engine, which could study only 40 aspects at once. And instead of using just one analytic model, Visa now operates 16 models, covering different segments of its market, such as geographic regions.

Jim's_BankDo you think Visa, or any bank for that matter, uses just batch analytics to provide fraud detection? Hadoop can play a significant role in building models. However, only a real-time solution will allow you to take those models and apply them in a timeframe that can make an impact.

The banking industry is based on data – the products and services in banking have no physical presence – and as a consequence, banks have to contend with ever-increasing volumes (and velocity, and variety) of data. Beyond the basic transactional data concerning debits/credits and payments, banks now:

  • Gather data from many external sources (including news) to gain insight into their risk position;
  • Chart their brand’s reputation in social media and other online forums.

This data is both structured and unstructured, as well as very time-critical. And, of course, in all cases financial data is highly sensitive and often subject to extensive regulation. By applying advanced analytics, the bank can turn this volume, velocity, and variety of data into actionable, real-time and secure intelligence with applications including:

  • Customer experience
  • Risk Management
  • Operations Optimization

It’s important to note that applying new technologies like Hadoop is only a start (it addresses 20% of the solution). Turing your insights into real-time actions will require additional Big Data technologies that help you “operationalize” the output of your batch analytics.

Customer Experience

Customer-Experience-Management-Customer-Centric-Organization-copyBanks are trying to become more focused on the specific needs of their customers and less on the products that they offer. They need to:

  • Engage customers in interactive / personalized conversations (real-time)
  • Provide a consistent, cross-channel experience including real-time touch points like web and mobile
  • Act at critical moments in the customer sales cycle (in the moment)
  • Market and sell based on customer real-time activities

Noting a general theme here? Big Data can assist banks with this transformation and reduce the cost of customer acquisition, increase retention, increase customer acceptance of marketing offers, increase sales by targeted marketing activities, and increase brand loyalty and trust. Big Data presents a phenomenal opportunity. However, the definition of Big Data HAS to be broader then Hadoop.

Big Data promises the following technology solutions to help with this transformation:

  • Single View of Customer (all detailed data in one location)
  • Targeted Marketing with micro-segmentation (sophisticated analytics on ALL of the data)
  • Multichannel Customer Experience (operationalizing back out to all the customer touch points)

Risk Management

Quality-Risk-ManagementRisk management is also critically important to the bank. Risk management needs to be pervasive within the organizational culture and operating model of the bank in order to make risk-aware business decisions, allocate capital appropriately, and reduce the cost of compliance. Ultimately, this means making data analytics as accessible as it is at Yahoo! If the bank could provide a “data playground” where all data sources were readily available with tools that were easy to use…well, lets just say that new risk management products would be popping up left and right.

Big Data promises a way of providing the organization integrated risk management solutions, covering:

  • Financial Risk (Risk Architecture, Data Architecture, Risk Analytics, Performance & reporting)
  • Operational Risk & Compliance
  • Financial Crimes (AML, Fraud, Case Management)
  • IT Risk (Security, Business Continuity and Resilience)

The key is to focus on one use-case first, and expand from there. But no matter which risk use-case you attack first, you will need batch, ad hoc, and real-time analytics.

Operations Optimization

operations_managementLarge banks often become unwieldy organizations through many acquisitions. Increasing flexibility and streamlining operations is therefore even more important in today’s more competitive banking industry. A bank that is able to increase their flexibility and streamline operations by transforming their core functions will be able to drive higher growth and profits; develop more modular back-room office systems; and respond quickly to changing business needs in a highly flexible environment.

This means that banks need new core infrastructure solutions. Examples might involve reducing loan origination times by standardizing its loan processes across all entities using Big Data.  Streamlining and automating these business processes will result in higher loan profitability, while complying with new government mandates.

Operational leverage improves when banks can deliver global, regional and local transaction and payment services efficiently and also when they use transaction insights to deliver the right services at the right price to the right clients.

Many banks are seeking to innovate in the areas of processing, data management and supply chain optimization. For example, in the past, when new payment business needs would arise, the bank would often build a payments solution from scratch to address it, leading to a fragmented and complex payments infrastructure. With Big Data technologies, the bank can develop an enterprise payments hub solution that gives a better understanding of product and payments platform utilization and improved efficiency.

Are you a bank and interested in new Big Data technologies like HadoopNoSQL datastores, and real-time stream processing? Interested in one integrated platform of all three?

Read the original blog entry...

More Stories By Jim Kaskade

Jim Kaskade currently leads Janrain, the category creator of Consumer Identity & Access Management (CIAM). We believe that your identity is the most important thing you own, and that your identity should not only be easy to use, but it should be safe to use when accessing your digital world. Janrain is an Identity Cloud servicing Global 3000 enterprises providing a consistent, seamless, and safe experience for end-users when they access their digital applications (web, mobile, or IoT).

Prior to Janrain, Jim was the VP & GM of Digital Applications at CSC. This line of business was over $1B in commercial revenue, including both consulting and delivery organizations and is focused on serving Fortune 1000 companies in the United States, Canada, Mexico, Peru, Chile, Argentina, and Brazil. Prior to this, Jim was the VP & GM of Big Data & Analytics at CSC. In his role, he led the fastest growing business at CSC, overseeing the development and implementation of innovative offerings that help clients convert data into revenue. Jim was also the CEO of Infochimps; Entrepreneur-in-Residence at PARC, a Xerox company; SVP, General Manager and Chief of Cloud at SIOS Technology; CEO at StackIQ; CEO of Eyespot; CEO of Integral Semi; and CEO of INCEP Technologies. Jim started his career at Teradata where he spent ten years in enterprise data warehousing, analytical applications, and business intelligence services designed to maximize the intrinsic value of data, servicing fortune 1000 companies in telecom, retail, and financial markets.

CloudEXPO Stories
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex to learn. This is because Kubernetes is more of a toolset than a ready solution. Hence it’s essential to know when and how to apply the appropriate Kubernetes constructs.
Dito announced the launch of its "Kubernetes Kickoff" application modernization program. This new packaged service offering is designed to provide a multi-phased implementation and optimization plan for leveraging Kubernetes on Google Kubernetes Engine (GKE). Kubernetes, a relatively new layer of the modern cloud stack, is a production-ready platform that allows companies to deploy and manage containerized applications, update with zero downtime, and securely scale their deployments.
The use of containers by developers -- and now increasingly IT operators -- has grown from infatuation to deep and abiding love. But as with any long-term affair, the honeymoon soon leads to needing to live well together ... and maybe even getting some relationship help along the way. And so it goes with container orchestration and automation solutions, which are rapidly emerging as the means to maintain the bliss between rapid container adoption and broad container use among multiple cloud hosts. This BriefingsDirect cloud services maturity discussion focuses on new ways to gain container orchestration, to better use serverless computing models, and employ inclusive management to keep the container love alive.
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at Dice, he takes a metrics-driven approach to management. His experience in building and managing high performance teams was built throughout his experience at Oracle, Sun Microsystems and SocialEkwity.
The KCSP program is a pre-qualified tier of vetted service providers that offer Kubernetes support, consulting, professional services and training for organizations embarking on their Kubernetes journey. The KCSP program ensures that enterprises get the support they're looking for to roll out new applications more quickly and more efficiently than before, while feeling secure that there's a trusted and vetted partner that's available to support their production and operational needs.