Welcome!

SDN Journal Authors: Liz McMillan, Yeshim Deniz, Elizabeth White, Pat Romanski, TJ Randall

Related Topics: @DXWorldExpo, Java IoT, Containers Expo Blog, Cloud Security, SDN Journal

@DXWorldExpo: Blog Post

Big Data and Banking – More than Hadoop | @CloudExpo [#BigData]

Do you think Visa, or any bank for that matter, uses just batch analytics to provide fraud detection?

Fraud is definitely top of mind for all banks. Steve Rosenbush at the Wall Street Journal recently wrote about Visa’s new Big Data analytic engine which has changed the way the company combats fraud. Visa estimates that its new Big Data fraud platform has identified $2 billion in potential annual incremental fraud savings. With Big Data, their new analytic engine can study as many as 500 aspects of a transaction at once. That’s a sharp improvement from the company’s previous analytic engine, which could study only 40 aspects at once. And instead of using just one analytic model, Visa now operates 16 models, covering different segments of its market, such as geographic regions.

Jim's_BankDo you think Visa, or any bank for that matter, uses just batch analytics to provide fraud detection? Hadoop can play a significant role in building models. However, only a real-time solution will allow you to take those models and apply them in a timeframe that can make an impact.

The banking industry is based on data – the products and services in banking have no physical presence – and as a consequence, banks have to contend with ever-increasing volumes (and velocity, and variety) of data. Beyond the basic transactional data concerning debits/credits and payments, banks now:

  • Gather data from many external sources (including news) to gain insight into their risk position;
  • Chart their brand’s reputation in social media and other online forums.

This data is both structured and unstructured, as well as very time-critical. And, of course, in all cases financial data is highly sensitive and often subject to extensive regulation. By applying advanced analytics, the bank can turn this volume, velocity, and variety of data into actionable, real-time and secure intelligence with applications including:

  • Customer experience
  • Risk Management
  • Operations Optimization

It’s important to note that applying new technologies like Hadoop is only a start (it addresses 20% of the solution). Turing your insights into real-time actions will require additional Big Data technologies that help you “operationalize” the output of your batch analytics.

Customer Experience

Customer-Experience-Management-Customer-Centric-Organization-copyBanks are trying to become more focused on the specific needs of their customers and less on the products that they offer. They need to:

  • Engage customers in interactive / personalized conversations (real-time)
  • Provide a consistent, cross-channel experience including real-time touch points like web and mobile
  • Act at critical moments in the customer sales cycle (in the moment)
  • Market and sell based on customer real-time activities

Noting a general theme here? Big Data can assist banks with this transformation and reduce the cost of customer acquisition, increase retention, increase customer acceptance of marketing offers, increase sales by targeted marketing activities, and increase brand loyalty and trust. Big Data presents a phenomenal opportunity. However, the definition of Big Data HAS to be broader then Hadoop.

Big Data promises the following technology solutions to help with this transformation:

  • Single View of Customer (all detailed data in one location)
  • Targeted Marketing with micro-segmentation (sophisticated analytics on ALL of the data)
  • Multichannel Customer Experience (operationalizing back out to all the customer touch points)

Risk Management

Quality-Risk-ManagementRisk management is also critically important to the bank. Risk management needs to be pervasive within the organizational culture and operating model of the bank in order to make risk-aware business decisions, allocate capital appropriately, and reduce the cost of compliance. Ultimately, this means making data analytics as accessible as it is at Yahoo! If the bank could provide a “data playground” where all data sources were readily available with tools that were easy to use…well, lets just say that new risk management products would be popping up left and right.

Big Data promises a way of providing the organization integrated risk management solutions, covering:

  • Financial Risk (Risk Architecture, Data Architecture, Risk Analytics, Performance & reporting)
  • Operational Risk & Compliance
  • Financial Crimes (AML, Fraud, Case Management)
  • IT Risk (Security, Business Continuity and Resilience)

The key is to focus on one use-case first, and expand from there. But no matter which risk use-case you attack first, you will need batch, ad hoc, and real-time analytics.

Operations Optimization

operations_managementLarge banks often become unwieldy organizations through many acquisitions. Increasing flexibility and streamlining operations is therefore even more important in today’s more competitive banking industry. A bank that is able to increase their flexibility and streamline operations by transforming their core functions will be able to drive higher growth and profits; develop more modular back-room office systems; and respond quickly to changing business needs in a highly flexible environment.

This means that banks need new core infrastructure solutions. Examples might involve reducing loan origination times by standardizing its loan processes across all entities using Big Data.  Streamlining and automating these business processes will result in higher loan profitability, while complying with new government mandates.

Operational leverage improves when banks can deliver global, regional and local transaction and payment services efficiently and also when they use transaction insights to deliver the right services at the right price to the right clients.

Many banks are seeking to innovate in the areas of processing, data management and supply chain optimization. For example, in the past, when new payment business needs would arise, the bank would often build a payments solution from scratch to address it, leading to a fragmented and complex payments infrastructure. With Big Data technologies, the bank can develop an enterprise payments hub solution that gives a better understanding of product and payments platform utilization and improved efficiency.

Are you a bank and interested in new Big Data technologies like HadoopNoSQL datastores, and real-time stream processing? Interested in one integrated platform of all three?

Read the original blog entry...

More Stories By Jim Kaskade

Jim Kaskade currently leads Janrain, the category creator of Consumer Identity & Access Management (CIAM). We believe that your identity is the most important thing you own, and that your identity should not only be easy to use, but it should be safe to use when accessing your digital world. Janrain is an Identity Cloud servicing Global 3000 enterprises providing a consistent, seamless, and safe experience for end-users when they access their digital applications (web, mobile, or IoT).

Prior to Janrain, Jim was the VP & GM of Digital Applications at CSC. This line of business was over $1B in commercial revenue, including both consulting and delivery organizations and is focused on serving Fortune 1000 companies in the United States, Canada, Mexico, Peru, Chile, Argentina, and Brazil. Prior to this, Jim was the VP & GM of Big Data & Analytics at CSC. In his role, he led the fastest growing business at CSC, overseeing the development and implementation of innovative offerings that help clients convert data into revenue. Jim was also the CEO of Infochimps; Entrepreneur-in-Residence at PARC, a Xerox company; SVP, General Manager and Chief of Cloud at SIOS Technology; CEO at StackIQ; CEO of Eyespot; CEO of Integral Semi; and CEO of INCEP Technologies. Jim started his career at Teradata where he spent ten years in enterprise data warehousing, analytical applications, and business intelligence services designed to maximize the intrinsic value of data, servicing fortune 1000 companies in telecom, retail, and financial markets.

CloudEXPO Stories
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments that frequently get lost in the hype. The panel will discuss their perspective on what they see as they key challenges and/or impediments to adoption, and how they see those issues could be resolved or mitigated.
There's no doubt that blockchain technology is a powerful tool for the enterprise, but bringing it mainstream has not been without challenges. As VP of Technology at 8base, Andrei is working to make developing a blockchain application accessible to anyone. With better tools, entrepreneurs and developers can work together to quickly and effectively launch applications that integrate smart contracts and blockchain technology. This will ultimately accelerate blockchain adoption on a global scale.
DXWorldEXPO LLC announced today that Nutanix has been named "Platinum Sponsor" of CloudEXPO | DevOpsSUMMIT | DXWorldEXPO New York, which will take place November 12-13, 2018 in New York City. Nutanix makes infrastructure invisible, elevating IT to focus on the applications and services that power their business. The Nutanix Enterprise Cloud Platform blends web-scale engineering and consumer-grade design to natively converge server, storage, virtualization and networking into a resilient, software-defined solution with rich machine intelligence.
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching of virtual storage services to its enterprise market.
Despite being the market leader, we recognized the need to transform and reinvent our business at Dynatrace, before someone else disrupted the market. Over the course of three years, we changed everything - our technology, our culture and our brand image. In this session we'll discuss how we navigated through our own innovator's dilemma, and share takeaways from our experience that you can apply to your own organization.