Welcome!

SDN Journal Authors: Pat Romanski, Destiny Bertucci, Liz McMillan, Elizabeth White, Amitabh Sinha

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Containers Expo Blog, Agile Computing, @DXWorldExpo, SDN Journal

@CloudExpo: Article

Best Practices for Amazon Redshift

Data Warehouse Analytics as a Service

Data Warehouse as a Service
Recently Amazon announced the availability of Redshift Data warehouse as a Service as a beta offering. Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It's optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Architecture Behind Redshift
Any data warehouse service meant to serve data of petabyte scale should have a robust architecture as its backbone. The following are the salient features of Redshift service.

  • Shared Nothing Architecture: As indicated in one of my earlier articles, Cloud Database Scale Out Using Shared Nothing Architecture, the shared nothing architectural pattern is the most desired for databases of this scale and the same concept is adhered to in Redshift. The core component of Redshift is a cluster and each cluster consists of multiple compute nodes, each node has its dedicated storage following the shared nothing principle.
  • Massively Parallel Processing (MPP): Hand in hand with the shared nothing pattern MPP provides horizontal scale out capabilities for large data warehouses rather than scaling up the individual servers. Massively parallel processing (MPP) enables fast execution of the most complex queries operating on large amounts of data. Multiple compute nodes handle all query processing leading up to the final result aggregation, with each core of each node executing the same compiled query segments on portions of the entire data. With the concept of NodeSlices Redshift has taken the MPP to the next level to the cores of a compute node. A compute node is partitioned into slices; one slice for each core of the node's multi-core processor. Each slice is allocated a portion of the node's memory and disk space, where it processes a portion of the workload assigned to the node.

Refer to the following diagram from AWS Documentation, about Data warehouse system architecture

  • Columnar Data Storage: Storing database table information in a columnar fashion reduces the number of disk I/O requests and reduces the amount of data you need to load from disk. Columnar storage for database tables drastically reduces the overall disk I/O requirements and is an important factor in optimizing analytic query performance.
  • Leader Node: The leader node manages most communications with client programs and all communication with compute nodes. It parses and develops execution plans to carry out database operations, in particular, the series of steps necessary to obtain results for complex queries. Based on the execution plan, the leader node distributes compiled code to the compute nodes and assigns a portion of the data to each compute node.
  • High Speed Network Connect: The clusters are connected internally by a 10 Gigabit Ethernet network, providing very fast communication between the leader node and the compute clusters.

Best Practices in Application Design on Redshift
The enablement of Big Data analytics through Redshift has created lot of excitement among the community. The usage of these kinds of alternate approaches to traditional data warehousing will be best in conjunction with the best practices for utilizing the features. The following are some of the best practices that can be considered for the design of applications on Redshift.

1. Collocated Tables: It is good practice to try to avoid sending data between the nodes to satisfy JOIN queries. Colocation between two joined tables occurs when the matching rows of the two tables are stored in the same compute nodes, so that the data need not be sent between nodes.

When you add data to a table, Amazon Redshift distributes the rows in the table to the cluster slices using one of two methods:

  • Even distribution
  • Key distribution

Even distribution is the default distribution method. With even distribution, the leader node spreads data rows across the slices in a round-robin fashion, regardless of the values that exist in any particular column. This approach is a good choice when you don't have a clear option for a distribution key.

If you specify a distribution key when you create a table, the leader node distributes the data rows to the slices based on the values in the distribution key column. Matching values from the distribution key column are stored together.

Colocation is best achieved by choosing the appropriate distribution keys than using the even distribution.

If you frequently join a table, specify the join column as the distribution key. If a table joins with multiple other tables, distribute on the foreign key of the largest dimension that the table joins with. If the dimension tables are filtered as part of the joins, compare the size of the data after filtering when you choose the largest dimension. This ensures that the rows involved with your largest joins will generally be distributed to the same physical nodes. Because local joins avoid data movement, they will perform better than network joins.

2. De-Normalization: In the traditional RDBMS, database storage is optimized by applying the normalization principles such that a particular attribute (column) is associated with one and only entity (Table). However in shared nothing scalable databases like Redshift this technique will not yield the desired results, rather keeping the redundancy of certain columns in the form of de-normalization is very important.

For example, the following query is one of the examples of a high performance query in the Redshift documentation.

SELECT * FROM tab1, tab2

WHERE tab1.key = tab2.key

AND tab1.timestamp > ‘1/1/2013'

AND tab2.timestamp > ‘1/1/2013';

Even if a predicate is already being applied on a table in a join query but transitively applies to another table in the query, it's useful to re-specify the redundant predicate if that other table is also sorted on the column in the predicate. That way, when scanning the other table, Redshift can efficiently skip blocks from that table as well.

By carefully applying de-normalization to bring the required redundancy, Amazon Redshift can perform at its best.

3. Native Parallelism: One of the biggest advantages of a shared nothing MPP architecture is about parallelism. Parallelism is achieved in multiple ways.

  • Inter Node Parallelism: It refers the ability of the database system to break up a query into multiple parts across multiple instances across the cluster.
  • Intra Node Parallelism: Intra node parallelism refers to the ability to break up query into multiple parts within a single compute node.

Typically in MPP architectures, both Inter Node Parallelism and Intra Node Parallelism will be combined and used at the same time to provide dramatic performance gains.

Amazon Redshift provides lot of operations to utilize both Intra Node and Inter Node parallelism.

When you use a COPY command to load data from Amazon S3, first split your data into multiple files instead of loading all the data from a single large file.

The COPY command then loads the data in parallel from multiple files, dividing the workload among the nodes in your cluster. Split your data into files so that the number of files is a multiple of the number of slices in your cluster. That way Amazon Redshift can divide the data evenly among the slices. Name each file with a common prefix. For example, each XL compute node has two slices, and each 8XL compute node has 16 slices. If you have a cluster with two XL nodes, you might split your data into four files named customer_1, customer_2, customer_3, and customer_4. Amazon Redshift does not take file size into account when dividing the workload, so make sure the files are roughly the same size.

Pre-Processing Data: Over the years RDBMS engines take pride of Location Independence. The Codd's 12 rules of the RDBMS states the following:

Rule 8: Physical data independence:

Changes to the physical level (how the data is stored, whether in arrays or linked lists, etc.) must not require a change to an application based on the structure.

However, in the columnar database services like Redshift the physical ordering of data does make major impact to the performance.

Sorting data is a mechanism for optimizing query performance.

When you create a table, you can define one or more of its columns as the sort key. When data is loaded into the table, the values in the sort key column (or columns) are stored on disk in sorted order. Information about sort key columns is passed to the query planner, and the planner uses this information to construct plans that exploit the way that the data is sorted. For example, a merge join, which is often faster than a hash join, is feasible when the data is distributed and presorted on the joining columns.

The VACUUM command also makes sure that new data in tables is fully sorted on disk. Vacuum as often as you need to in order to maintain a consistent query performance.

Summary
Platform as a Service (PaaS) is one of the greatest benefits to the IT community due to the Cloud Delivery Model, and from the beginning of pure play programming models like Windows Azure and Elastic Beanstalk it has moved to high-end services like data warehouse Platform as a Service. As the industry analysts see good adoption of the above service due to the huge cost advantages when compared to the traditional data warehouse platform, the best practices mentioned above will help to achieve the desired level of performance. Detailed documentation is also available on the vendor site in the form of developer and administrator guides.

More Stories By Srinivasan Sundara Rajan

Highly passionate about utilizing Digital Technologies to enable next generation enterprise. Believes in enterprise transformation through the Natives (Cloud Native & Mobile Native).

@CloudExpo Stories
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software. They hope to capture value from emerging technologies such as IoT, SDN, and AI. Ultimately, irrespective of the vertical, it is about deriving value from independent software applications participating in an ecosystem as one comprehensive solution. In his session at @ThingsExpo, Kausik Sridhar, founder and CTO of Pulzze Systems, discussed how given the magnitude of today's application ...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.