Click here to close now.

Welcome!

SDN Journal Authors: Pat Romanski, Elizabeth White, Liz McMillan, Yeshim Deniz, Carmen Gonzalez

Related Topics: SDN Journal, JAVA IoT, Microsoft Cloud, Containers Expo Blog, CloudExpo® Blog, BigDataExpo® Blog

SDN Journal: Blog Feed Post

Scaling Stateful Network Devices

One of the premises of SDN and cloud scalability is that it's easy to simply replicate services

One of the premises of SDN and cloud scalability is that it's easy to simply replicate services - whether they be application or network focused - and distribute traffic across them to scale infinitely.

In theory, this is absolutely the case. In theory, one can continue to add capacity to any layer of the data center and simply distribute requests across the layer to scale out as necessary.

Where reality puts a big old roadblock in the way is when services are stateful. This is the case with many applications - much to the chagrin of cloud and REST purists, by the way - and it is also true with a significant number of network devices. Unfortunately, it is often these devices that proponents of network virtualization target without offering a clear path to addressing the challenges inherent in scaling stateful network devices.

SDN's claims to supporting load balancing, at least at layer 4, are almost certainly based on traditional, dumb layer 4 load balancing. We use the term "dumb" to simply mean that it doesn't care about the payload or the application or anything else other than its destination port and service and does not participate in the flow. In most layer 4 load balancing scenarios for which this is the case, the only time the load balancer examines the traffic is when processing a new connection. The load balancer may buffer enough packets to determine some basic networking details - source and destination IP and TCP ports - and then it establishes a connection between the client and the server. From this point on, generally speaking, the load balancer assumes the role of a simple forwarder. Subsequent packets with the same pattern are simply forwarded on to the destination.

If you think about it, this is so close to the behavior described by an SDN-enabled network as to be virtually the same. In an SDN-enabled network, a new flow (session if you will, in the load balancing vernacular) would be directed to the SDN controller for processing. The SDN controller would determine its destination and inform the appropriate network components of that decision. Subsequent packets with the same pattern would be forwarded on to the destination according to the information in the FIB (Forwarding Information Base). As the load balancing service was scaled out, inevitably packets would be distributed to components lacking an entry in the FIB. Said components would query the controller, which would simply return the appropriate entry to the device.

In such a way, simple layer 4 load balancing can be achieved via SDN*.

However, the behavior of the layer 4 load balancing service described is stateless. It does not actively manage the flow. Aside from the initial inspection and routing decision, the load balancing service is actually just a bump in the wire, forwarding packets much in the same manner as any other switch in the network.

But what happens when the load balancing service is actively participating in the flow, i.e. it is stateful.

Scaling Stateful Devices

Stateful devices are those that actively manage a flow. That is, they may inspect, manipulate, or otherwise interact with flows in real-time. These devices are often used for security - both ingress and egress - as well as acceleration and optimization of application exchanges. They are also use for content transformation purposes, such as XML or SOA gateways, API management, and other application-focused scenarios. The most common use of stateful devices is persistent load balancing, aka sticky sessions, aka server affinity. Persistent load balancing requires the load balancing service (or device) maintain a mapping of user to application instance (or server, in traditional, non-virtualized environments). This mapping is unique to the device, and without it a wide variety of applications break when scaled - VDI being the most recent example of an application relying on persistence of sessions .

In all these cases, however, one thing is true: the device providing the service is an active participant. The device maintains service-specific information regarding a variety of variables including the user, the device, the traffic, the application, the data. The entire context of the session is often maintained by one or more devices along the traffic chain.

What that means is that, like stateful, shared-nothing applications, it matters to which device a specific request is directed. While certainly the same model used at layer 4 and below in which a central controller (or really bank of controllers) maintains this information and doles it on on-demand, the result is that depending on the distribution algorithm used, every stateful device would end up with the same flows installed. In the interim, the network is frantically applying optimization and acceleration policies to traffic that may be offset by the latency introduced by the need to query the controller for session state information, resulting in a net loss of performance experienced by the end-user.

And we're not even considering the impact of secured traffic on such a model, where any device needing to make decisions on such traffic must have access to the certificates and keys used to encrypt the traffic in order to decrypt, examine, and usually re-encrypt the traffic. Stateful network devices - application delivery controllers, intrusion prevention and detection systems, secure gateways, etc... - are often required to manage secured content, which means distributing and managing certificates and keys across what may be an ever-expanding set of network devices.

The reality is that stateful network devices are a necessary and integral component of not just networks but applications today. While modern network architectures like SDN bring much needed improvements to provisioning and management of large scale networks, their scaling models are based on the premise of stateless, relatively simple devices not actively participating in flows. For those devices that rely upon deep participation in the flow, this model introduces a variety of challenges that may not find a solution that fits well with SDN without compromising on performance outside new protocols capable of carrying that state persistently throughout the lifetime of a session.

* This does not address the issue of resources required to maintain said forwarding tables in a given device, which given current capacity of commoditized switches supported for such a role seems unlikely to be realistically achieved.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@CloudExpo Stories
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at ...
After a couple of false starts, cloud-based desktop solutions are picking up steam, driven by trends such as BYOD and pervasive high-speed connectivity. In his session at 15th Cloud Expo, Seth Bostock, CEO of IndependenceIT, cut through the hype and the acronyms, and discussed the emergence of full-featured cloud workspaces that do for the desktop what cloud infrastructure did for the server. He also discussed VDI vs DaaS, implementation strategies and evaluation criteria.
The emergence of cloud computing and Big Data warrants a greater role for the PMO to successfully manage enterprise transformation driven by these powerful trends. As the adoption of cloud-based services continues to grow, a governance model is needed to orchestrate enterprise cloud implementations and harness the power of Big Data analytics. In his session at Cloud Expo, Mahesh Singh, President of BigData, Inc., discussed how the Enterprise PMO takes center stage not only in developing the app...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happe...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective ...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a b...
When an enterprise builds a hybrid IaaS cloud connecting its data center to one or more public clouds, security is often a major topic along with the other challenges involved. Security is closely intertwined with the networking choices made for the hybrid cloud. Traditional networking approaches for building a hybrid cloud try to kludge together the enterprise infrastructure with the public cloud. Consequently this approach requires risky, deep "surgery" including changes to firewalls, subnets...
Containers Expo Blog covers the world of containers, as this lightweight alternative to virtual machines enables developers to work with identical dev environments and stacks. Containers Expo Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Bookmark Containers Expo Blog ▸ Here Follow new article posts on Twitter at @ContainersExpo
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. 8th International Big Data Expo, co-located with 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. As advanced data storage, access and analytics technologies aimed at handling high-volume and/or fast moving data all move center stage, aided by the cloud computing bo...
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the...
You use an agile process; your goal is to make your organization more agile. But what about your data infrastructure? The truth is, today's databases are anything but agile - they are effectively static repositories that are cumbersome to work with, difficult to change, and cannot keep pace with application demands. Performance suffers as a result, and it takes far longer than it should to deliver new features and capabilities needed to make your organization competitive. As your application an...
Move from reactive to proactive cloud management in a heterogeneous cloud infrastructure. In his session at 16th Cloud Expo, Manoj Khabe, Innovative Solution-Focused Transformation Leader at Vicom Computer Services, Inc., will show how to replace a help desk-centric approach with an ITIL-based service model and service-centric CMDB that’s tightly integrated with an event and incident management platform. Learn how to expand the scope of operations management to service management. He will al...
Over the years, a variety of methodologies have emerged in order to overcome the challenges related to project constraints. The successful use of each methodology seems highly context-dependent. However, communication seems to be the common denominator of the many challenges that project management methodologies intend to resolve. In this respect, Information and Communication Technologies (ICTs) can be viewed as powerful tools for managing projects. Few research papers have focused on the way...
As the world moves from DevOps to NoOps, application deployment to the cloud ought to become a lot simpler. However, applications have been architected with a much tighter coupling than it needs to be which makes deployment in different environments and migration between them harder. The microservices architecture, which is the basis of many new age distributed systems such as OpenStack, Netflix and so on is at the heart of CloudFoundry – a complete developer-oriented Platform as a Service (PaaS...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, ...
High-performing enterprise Software Quality Assurance (SQA) teams validate systems that are ready for use - getting most actively involved as components integrate and form complete systems. These teams catch and report on defects, making sure the customer gets the best software possible. SQA teams have leveraged automation and virtualization to execute more thorough testing in less time - bringing Dev and Ops together, ensuring production readiness. Does the emergence of DevOps mean the end of E...
The term culture has had a polarizing effect among DevOps supporters. Some propose that culture change is critical for success with DevOps, but are remiss to define culture. Some talk about a DevOps culture but then reference activities that could lead to culture change and there are those that talk about culture change as a set of behaviors that need to be adopted by those in IT. There is no question that businesses successful in adopting a DevOps mindset have seen departmental culture change, ...
Amazon and Google have built software-defined data centers (SDDCs) that deliver massively scalable services with great efficiency. Yet, building SDDCs has proven to be a near impossibility for companies without hyper-scale resources. In his session at 15th Cloud Expo, David Cauthron, CTO and Founder of NIMBOXX, highlighted how a mid-sized manufacturer of global industrial equipment bridged the gap from virtualization to software-defined services, streamlining operations and costs while connect...
The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential. The DevOps Summit at Cloud Expo – to be held June 3-5, 2015, at the Javits Center in New York City – will expand the DevOps community, enable a wide...