Welcome!

SDN Journal Authors: Destiny Bertucci, Liz McMillan, Pat Romanski, Elizabeth White, Amitabh Sinha

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog

@CloudExpo: Blog Post

Big Moves in Big Data: EMC's Hadoop Strategy

To date, Big Storage has been locked out of Big Data

To date, Big Storage has been locked out of Big Data. It’s been all about direct attached storage for several reasons. First, Advanced SQL players have typically optimized architectures from data structure (using columnar), unique compression algorithms, and liberal usage of caching to juice response over hundreds of terabytes. For the NoSQL side, it’s been about cheap, cheap, cheap along the Internet data center model: have lots of commodity stuff and scale it out. Hadoop was engineered exactly for such an architecture; rather than speed, it was optimized for sheer linear scale.

Over the past year, most of the major platform players have planted their table stakes with Hadoop. Not surprisingly, IT household names are seeking to somehow tame Hadoop and make it safe for the enterprise.

Up ' til now, anybody with armies of the best software engineers that Internet firms could buy could brute force their way to scale out humungous clusters and if necessary, invent their own technology, then share and harvest from the open source community at will. Hardly a suitable scenario for the enterprise mainstream, the common thread behind the diverse strategies of IBM, EMC, Microsoft, and Oracle toward Hadoop has been to not surprisingly make Hadoop more approachable.

Up ' til now, anybody with armies of the best software engineers that Internet firms could buy could brute force their way to scale out humungous clusters and if necessary.

What’s been conspicuously absent so far was a play from Big Optimized Storage. The conventional wisdom is that SAN or NAS are premium, architected systems whose costs might be prohibitive when you talk petabytes of data.

Similarly, so far there has been a different operating philosophy behind the first generation implementations from the NoSQL world that assumed that parts would fail, and that five nines service levels were overkill. And anyway, the design of Hadoop brute forced the solution: replicate to have three unique copies of the data distributed around the cluster, as hardware is cheap.

As Big Data gains traction in the enterprise, some of it will certainly fit this pattern of something being better than nothing, as the result is unique insights that would not otherwise be possible. For instance, if your running analysis of Facebook or Twitter goes down, it probably won’t take the business with it. But as enterprises adopt Hadoop – and as pioneers stretch Hadoop to new operational use cases such as what Facebook is doing with its messaging system – those concepts of mission-criticality are being revisited.

And so, ever since EMC announced last spring that its Greenplum unit would start supporting and bundling different versions of Hadoop, we’ve been waiting for the other shoe to drop: When would EMC infuse its Big Data play with its core DNA, storage?

Today, EMC announced that its Isilon networked storage system was adding native support for Apache Hadoop’s HDFS file system. There were some interesting nuances to the rollout.

Big vendors feeling their way

It’s interesting to see how IT household names are cautiously navigating their way into unfamiliar territory. EMC becomes the latest, after Oracle and Microsoft, to calibrate their Hadoop strategy in public.

Oracle announced its Big Data appliance last fall before it lined up its Hadoop distribution. Microsoft ditched its Dryad project built around its HPC Server. Now EMC has recalibrated its Hadoop strategy; when it first unveiled its Hadoop strategy last spring, the spotlight was on the MapR proprietary alternatives to the HDFS file system of Apache Hadoop. It’s interesting that vendor initial announcements have either been vague, or have been tweaked as they’ve waded into the market. For EMC’s shift, more about that below.


For EMC, HDFS is the mainstream

MapR’s strategy (and IBM’s along with it, regarding GPFS) has prompted debate and concern in the Hadoop community about commercial vendors forking the technology. As we’ve ranted previously, Hadoop’s growth will be tied, not only to megaplatform vendors that support it, but the third party tools and solutions ecosystem that grows around it.

For such a thing to happen, ISVs and consulting firms need to have a common target to write against, and having forked versions of Hadoop won’t exactly grow large partner communities.

Regarding EMC, the original strategy was two Greenplum Hadoop editions: a Community Edition with a free Apache distro and an Enterprise Edition that bundled MapR, both under the Greenplum HD branding umbrella. At first blush, it looked like EMC was going to earn the bulk of its money from the proprietary side of the Hadoop business.

This reflects emerging conventional wisdom that the enterprise mainstream is leery about lock-in to anything that smells proprietary for technology where they still are in the learning curve.

What’s significant is that the new announcement of Isilon support pertains on to the HDFS open source side. More to the point, EMC is rebranding and subtly repositioning its Greenplum Hadoop offerings: Greenplum HD is the Apache HDFS edition with the optional Isilon support, and Greenplum MR is the MapR version, which is niche targeted towards advanced Hadoop use cases that demand higher performance.

Coming atop recent announcements from Oracle and Microsoft that have come clearly out on the side of OEM’ing Apache rather than anything limited or proprietary, and this amounts to an unqualified endorsement of Apache Hadoop/HDFS as not only the formal, but also the de facto standard.

This reflects emerging conventional wisdom that the enterprise mainstream is leery about lock-in to anything that smells proprietary for technology where they still are in the learning curve. Other forks may emerge, but they will not be at the base file system layer. This leaves IBM and MapR pigeonholed – admittedly, there will be API compatibility, but clearly both are swimming upstream.

Central Storage is newest battleground

As noted earlier, Hadoop’s heritage has been the classic Internet data center scale-out model. The advantage is that, leveraging Hadoop’s highly linear scalability, organizations could easily expand their clusters quite easily by plucking more commodity server and disk. Pioneers or purists would scoff at the notion of an appliance approach because it was always simply scaling out inexpensive, commodity hardware, rather than paying premiums for big vendor boxes.

In blunt terms, the choice is whether you pay now or pay later. As mentioned before, do-it-yourself compute clusters require sweat equity – you need engineers who know how to design, deploy, and operate them. The flipside is that many, arguably most corporate IT organizations either lack the skills or the capital. There are various solutions to what might otherwise appear a Hobson’s Choice:

  • Go to a cloud service provider that has already created the infrastructure, such as what Microsoft is offering with its Hadoop-on-Azure services;
  • Look for a happy, simpler medium such as Amazon’s Elastic MapReduce on its DynamoDB service;
  • Subscribe to SaaS providers that offer Hadoop applications (e.g., social network analysis, smart grid as a service) as a service;

    Pioneers or purists would scoff at the notion of an appliance approach because it was always simply scaling out inexpensive, commodity hardware, rather than paying premiums for big vendor boxes.

  • Get a platform and have a systems integrator put it together for you (key to IBM’s BigInsights offering, and applicable to any SI that has a Hadoop practice)
  • Go to an appliance or engineered systems approach that puts Hadoop and/or its subsystems in a box, such as with Oracle Big Data Appliance or EMC’s Greenplum DCA. The systems engineering is mostly done for you, but the increments for growing the system can be much larger than simply adding a few x86 servers here or there (Greenplum HD DCA can scale in groups of 4 server modules). Entry or expansion costs are not necessarily cheap, but then again, you have to balance capital cost against labor.
  • Surrounding Hadoop infrastructure with solutions. This is not a mutually exclusive strategy; unless you’re Cloudera or Hortonworks, which make their business bundling and supporting the core Apache Hadoop platform, most of the household names will bundle frameworks, algorithms, and eventually solutions that in effect place Hadoop under the hood. For EMC, the strategy is their recent announcement of a Unified Analytics Platform (UAP) that provides collaborative development capabilities for Big Data applications. EMC is (or will be) hardly alone here.

With EMC’s new offering, the scale-up option tackles the next variable: storage. This is the natural progression of a market that will address many constituencies, and where there will be no single silver bullet that applies to all.

This guest post comes courtesy of Tony Baer’s OnStrategies blog. Tony is a senior analyst at Ovum.

More Stories By Tony Baer

Tony Baer is Principal Analyst with Ovum, leading Ovum’s research on the software lifecycle. Working in concert with other members of Ovum’s software group, his research covers the full lifecycle from design and development to deployment and management. Areas of focus include application lifecycle management, software development methodologies (including agile), SOA, IT service management/ITIL, and IT management/governance.

Baer has been a noted authority on software development platforms and integration architecture for nearly 20 years. Prior to joining Ovum, he was an independent analyst whose company ‘onStrategies’ delivered software development and integration tools to vendors with technology assessment and market positioning services. He also led Computerwire’s CIO Agenda and Computer Finance end-user best practices research services.

Follow him on Twitter @TonyBaer or read his blog site www.onstrategies.com/blog.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@CloudExpo Stories
The dynamic nature of the cloud means that change is a constant when it comes to modern cloud-based infrastructure. Delivering modern applications to end users, therefore, is a constantly shifting challenge. Delivery automation helps IT Ops teams ensure that apps are providing an optimal end user experience over hybrid-cloud and multi-cloud environments, no matter what the current state of the infrastructure is. To employ a delivery automation strategy that reflects your business rules, making r...
Modern software design has fundamentally changed how we manage applications, causing many to turn to containers as the new virtual machine for resource management. As container adoption grows beyond stateless applications to stateful workloads, the need for persistent storage is foundational - something customers routinely cite as a top pain point. In his session at @DevOpsSummit at 21st Cloud Expo, Bill Borsari, Head of Systems Engineering at Datera, explored how organizations can reap the bene...
Kubernetes is an open source system for automating deployment, scaling, and management of containerized applications. Kubernetes was originally built by Google, leveraging years of experience with managing container workloads, and is now a Cloud Native Compute Foundation (CNCF) project. Kubernetes has been widely adopted by the community, supported on all major public and private cloud providers, and is gaining rapid adoption in enterprises. However, Kubernetes may seem intimidating and complex ...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
In his session at 21st Cloud Expo, Michael Burley, a Senior Business Development Executive in IT Services at NetApp, described how NetApp designed a three-year program of work to migrate 25PB of a major telco's enterprise data to a new STaaS platform, and then secured a long-term contract to manage and operate the platform. This significant program blended the best of NetApp’s solutions and services capabilities to enable this telco’s successful adoption of private cloud storage and launching ...
In his general session at 21st Cloud Expo, Greg Dumas, Calligo’s Vice President and G.M. of US operations, discussed the new Global Data Protection Regulation and how Calligo can help business stay compliant in digitally globalized world. Greg Dumas is Calligo's Vice President and G.M. of US operations. Calligo is an established service provider that provides an innovative platform for trusted cloud solutions. Calligo’s customers are typically most concerned about GDPR compliance, application p...
The past few years have brought a sea change in the way applications are architected, developed, and consumed—increasing both the complexity of testing and the business impact of software failures. How can software testing professionals keep pace with modern application delivery, given the trends that impact both architectures (cloud, microservices, and APIs) and processes (DevOps, agile, and continuous delivery)? This is where continuous testing comes in. D
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
SYS-CON Events announced today that Synametrics Technologies will exhibit at SYS-CON's 22nd International Cloud Expo®, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Synametrics Technologies is a privately held company based in Plainsboro, New Jersey that has been providing solutions for the developer community since 1997. Based on the success of its initial product offerings such as WinSQL, Xeams, SynaMan and Syncrify, Synametrics continues to create and hone in...
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a way that makes the public cloud a non-starter. You’re looking at private cloud solutions based on hyperconverged infrastructure, but you’re concerned with the limits inherent in those technologies.
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software. They hope to capture value from emerging technologies such as IoT, SDN, and AI. Ultimately, irrespective of the vertical, it is about deriving value from independent software applications participating in an ecosystem as one comprehensive solution. In his session at @ThingsExpo, Kausik Sridhar, founder and CTO of Pulzze Systems, discussed how given the magnitude of today's application ...
The “Digital Era” is forcing us to engage with new methods to build, operate and maintain applications. This transformation also implies an evolution to more and more intelligent applications to better engage with the customers, while creating significant market differentiators. In both cases, the cloud has become a key enabler to embrace this digital revolution. So, moving to the cloud is no longer the question; the new questions are HOW and WHEN. To make this equation even more complex, most ...
As you move to the cloud, your network should be efficient, secure, and easy to manage. An enterprise adopting a hybrid or public cloud needs systems and tools that provide: Agility: ability to deliver applications and services faster, even in complex hybrid environments Easier manageability: enable reliable connectivity with complete oversight as the data center network evolves Greater efficiency: eliminate wasted effort while reducing errors and optimize asset utilization Security: imple...
Mobile device usage has increased exponentially during the past several years, as consumers rely on handhelds for everything from news and weather to banking and purchases. What can we expect in the next few years? The way in which we interact with our devices will fundamentally change, as businesses leverage Artificial Intelligence. We already see this taking shape as businesses leverage AI for cost savings and customer responsiveness. This trend will continue, as AI is used for more sophistica...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
Digital transformation is about embracing digital technologies into a company's culture to better connect with its customers, automate processes, create better tools, enter new markets, etc. Such a transformation requires continuous orchestration across teams and an environment based on open collaboration and daily experiments. In his session at 21st Cloud Expo, Alex Casalboni, Technical (Cloud) Evangelist at Cloud Academy, explored and discussed the most urgent unsolved challenges to achieve f...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...